The impact of observations in the latest ECMWF reanalysis system

András Horányi, Paul Berrisford, Gionata Biavati, Dick Dee, Hans Hersbach, Joaquin Munoz-Sabater, Iryna Rozum, Adrian Simmons, Cornel Soci

and lot of collaborators

special thanks to Carla Cardinali for the interpretation of the DFS results

WMO workshop, Shanghai, 10-13 May, 2016

Initial remarks

It is the first (and hopefully not the last) reanalysis talk in the history of the "WMO workshops on the impact of various observing systems on NWP"!

BUT: might be interesting, since it provides information about the evolution of the observing system from the NWP perspective → some of the results discussed earlier this week will be recalled/confirmed

Table of content

- Brief introduction to the ECMWF's Copernicus ERA5 reanalysis system (this is the new generation ECMWF reanalysis system succeeding ERA-Interim)
- Impact of observations in the early ERA5 reanalysis suites

Reanalysis: consistency

Consistent reconstruction of the atmosphere, waves (and ocean):

- merge observations into global fields,
- using the laws of physics
- and appropriate bias correction scheme
- maintain the same up-to-date system over the entire reanalysis period.

At lower resolution to keep affordable

13/05/2016, WMO workshop, Shanghai

What is new in ERA5 as compared to ERA-Interim?

	ERA-Interim	ERA5	
Period	1979 – present	1979 – present	
Start of production	August 2006	Jan 2016, 1979-NRT: end 2017	
Assimilation system	2006 technology	Current state of the art (12h 4D-Var with EDA)	
Model input (radiation and surface)	As in operations, (inconsistent sea surface temperature)	Appropriate for climate, e.g., evolution greenhouse gases, volcanic eruptions, sea surface temperature and sea ice	
Spatial resolution	79 km globally 60 levels to 10 Pa	32 km globally (T639) 137 levels to 1 Pa	
Uncertainty estimate		Based on a 10-member ensemble at 64 km (T319)	
Land Component	79km	<32km, TBC	
Output frequency	6-hourly Analysis fields	Hourly (three-hourly for the ensemble), Extended list of parameters ~ 5 Peta Byte	
Extra Observations	Mostly ERA-40, GTS	Various reprocessed CDRs, latest instruments	
Variational Bias corrections	Satellite radiances Radiosondes: RASE	Also ozone, aircraft, surface pressure, Radiosondes: RICH + Solar-Elevation (RISE) operational bias control from 2015	

The evolving observing system

Newly reprocessed data sets

Radiances: SSM/I brightness temp from CM-SAF METEOSAT from EUMETSAT

Atmospheric motion vector winds: METEOSAT, GMS/GOES-9/MTSAT, GOES-8 to 15, AVHRR METOP and NOAA

Scatterometers: ASCAT-A, ERS 1/2 soil moisture

Radio Occultation: METOP GRAS, COSMIC, CHAMP, GRACE, SAC-C, TERRASAR-x

Ozone: NIMBUS-7, EP TOMS, ERS-2 GOME, ENVISAT SCIAMACHY, Aura MLS, OMI

Data not used by ERA-Interim (due to lack of infrastructure)

IASI, ASCAT, ATMS, Cris, Himawari, FY-3 ...

Typically the latest instruments: ERA5 is more future proof!

Improved data usage

all-sky vs clear-sky assimilation, latest radiative transfer function,

13/05/2016, WMO workshop, Shanghai

ERA5: forecast skill

Some initial verification of the 2014-NRT stream

Scores not far from ECMWF operational, much better than for ERA-Interim

Tropical cyclone "Halong": evolution of the minimum pressure (much better than ERA-Interim, comparable to operations) OPER, ERA5, EDA, ERA-INTERIM

ERA5: preparations and streams

- We have started the the early suites of ERA5 (scan and check the observations for the 40 years, develop monitoring tools, archiving, post-processing etc.)
- ERA5 to be completed until the end of 2017 (and continue the near real time production beyond)
- ERA5 streams: 1979-1990, 1989-2000, 1999-2010, 2009-2017, 2014- (Near Real Time Production)
 Note: these suites are just started...

Impact of observations in reanalysis

★ How to quantify it?

- Some experiments for GNSS-RO
 ★ OSE-type of assessment: very costly (though there will be some experiments for GNSS-RO)
- ★ EDA: might be an option for information content studies since EDA is used to compute background error covariances
- ★ Adjoint observation diagnostics:
 - DFS (Degree of Freedom for Signal; analysis impact): practically free of charge
 - FSOI (Forecast Sensitivity Observation Impact; forecast impact): too costly (but might be considered for shorter periods)

Forecast/analysis sensitivity to observations

<u>Aim</u>: quantify the impact of observations

$$\frac{\partial J_e}{\partial \mathbf{y}} = \frac{\partial \mathbf{x}_a}{\partial \mathbf{y}} \frac{\partial J_e}{\partial \mathbf{x}_a}$$

10

 J_e is a measure of the forecast error e.g in energy

Observation Influence is complementary to Background Influence (impact/weight of observations in the analysis)

13/05/2016, WMO workshop, Shanghai

DFS and OI results: some remarks

- These are <u>VERY preliminary results</u> based on initial "scout reanalysis runs" (some suites are to be improved)
- The results depend on the observing and model systems used (they are not absolute)
- DFS (OI) provides information only about the influence of observation into the analysis, but does not tell if the impact is positive or negative (though: DFS and FSOI fractional impacts are generally similar)
- Error bars are not shown, but only "large scale" issues will be discussed IN THE NEXT FIGURES FRACTIONAL OBSERVATION AMOUNTS/DFS, AND OI WILL BE SHOWN AND ALSO SOME OI CHARTS

1979 suite: DFS (%), OBS (%) and OI

- Conventional vs. satellite observations: 35%-65%
- ★ Conventional vs. satellite DFS: 75%-25%
- The conventional observations have an overwhelming impact!
- The radiosondes are the most influential
- The buoys have the largest impact per observation (as today), small weight is given to the satellite data

1979 suite – Observation Influence: radiosondes vs. HIRS

Radiosonde winds for 0-400 hPa

Uniformly large impact → the overall impact is large

TIROS-N HIRS channel 6 radiances

Large impact at the polar ³ regions (to be checked) → the overall impact is smaller (but still more than 10%)
⁶

1989 *suite:* **DFS** (%), **OBS** (%) *and* **OI**

- ***** Conventional vs. satellite observations: 22%-78%
- ***** Conventional vs. satellite DFS: 40%-60% (satellites take over)
- The satellite observations are getting larger overall impact
- HIRS have the largest impact (closely followed by radiosondes)
- The per observation impact of satellite data largely increased

1989 suite –Observation Influence: HIRS vs. radiosondes

NOAA-11 HIRS, channel 11 radiances

Increased impact at the mid-latitudes → the overall impact had been increased (more than 30% by now)

Radiosonde winds for 0-400 hPa

Similarly large impact than for the previous stream

1979 vs 1989 suite – Observation Influence: radiosondes vs. HIRS

1999 suite: DFS (%), OBS (%) and OI

- ***** Conventional vs. satellite observations: 15%-85%
- ***** Conventional vs. satellite DFS: 28%-72%
- The satellite observations are dominating (quantity and impact)
- → <u>AMSU-A</u>, SSMI, HIRS and SATOB: the largest sat. contributors
- Aircraft data are getting equally important than radiosondes

1999 suite - Observation Influence: AMSU-A for two satellites

NOAA-15 AMSU-A, channel 8 radiances

Reasonably large per observation impact especially at midlatitudes (overall 24%)

NOAA-16 AMSU-A, channel 8 radiances

13/05/2016, WMO workshop, Shanghai

1999 suite – Observation Influence: ACAR vs. radiosondes

ACAR windspeed at 0-400 hPa

Good ACAR coverage and impact particularly in areas with less radiosondes (Pacific)

Radiosonde winds for 0-400 hPa

13/05/2016, WMO workshop, Shanghai

2009 suite: DFS (%), OBS (%) and OI

- ***** Conventional vs. satellite observations: 8%-92%
- ***** Conventional vs. satellite DFS: 18%-82%
- → AMSU-A, AIRS, IASI and GNSS-RO: largest satellite contributors
- Large OI for allsky-TMI (MW humidity sounder), also GNSS-RO
- Aircraft are the most influential conventional observation (due to its growing number)

2009 suite – Observation Influence: AMDAR vs. all-sky radiances

AMDAR winds at 0-400 hPa

Uniformly large impact

All-sky TRMM/TMI channel 6 radiances

Strong tropical impact

13/05/2016, WMO workshop, Shanghai

2015 suite: DFS (%), OBS (%) and OI

- ***** Conventional vs. satellite observations: 10%-90%
- ***** Conventional vs. satellite DFS: 20%-80%
- → IASI, AMSU-A, AIRS and CRIS as largest satellite contributors
- Impact of SYNOPs is getting similar than radiosondes (aircraft are clearly dominant among the convntional observations)

2015 suite –Observation Influence: IASI vs. SYNOP pressure

METOP-A IASI channel 335 radiances

Large impact at the tropical and polar regions

SYNOP pressure

Uniformly large impact

ERA5: observation amounts and influence (%)

	OBSERVATION AMOUNT (%)		DFS (%)	
	CONVENTIONAL	SATELLITE	CONVENTIONAL	SATELLITE
1979 suite	35	65	75	25
1989 suite	22	78	40	60
1999 suite	15	85	28	72
2009 suite	8	92	18	82
2014 suite	10	90	20	80

Summary, conclusions (1)

- ERA5 reanalysis covers the "satellite era", i.e. the satellite observations are always dominating in observation quantities (reaching 90% today)
- The total influence of conventional observations are always and still large (now: double than their observation amount would suggest)
- The per observation impact of conventional observations are always larger than that of the satellites
- The per observation impact of satellite observations had been increased (especially for the all-sky radiances, for GNSS-RO it was always large)

13/05/2016, WMO workshop, Shanghai

OPERNICUS Europe's eyes on Earth

29

Summary, conclusions (2)

- The influence of the aircraft and surface observations had been increased with time (with respect to radiosondes, which was dominant at the early times).
- ★ History of satellite observation influences: HIRS (80s, 90s) →
 AMSU-A (end of 90s) → IASI (AIRS)

ERA5 outlook

★ ERA5 availability:

- ★ End of 2016: 2010 to NRT available
- ★ 2-years from now: 1979-2009
- ★ Afterwards: continuation in near real time

Thank you!

