Satellite Soil Moisture Validation & Application Workshop 2013 Frascati, Italy1-3 July 2013

Monitoring the reliability of earth observation soil moisture data through ground measurements and land surface modelling

Albergel C.⁽¹⁾, <u>Muñoz-Sabater J.</u>⁽¹⁾, de Rosnay P.⁽¹⁾, Balsamo G.⁽¹⁾, Isaksen L.⁽¹⁾, Dorigo W.⁽²⁾, Naemi V.⁽²⁾, Hasenauer S.⁽²⁾, Wagner W.⁽²⁾, Reichle R.⁽³⁾, de Jeu R.⁽⁴⁾, Kerr Y.⁽⁵⁾, Gruhier C.^(5.*), Brocca L.⁽⁶⁾

⁽¹⁾ European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK

⁽²⁾ Department of Geodesy and Geo-information, Vienna University of Technology, Vienna, Austria

⁽³⁾ Global Modelling and Assimilation Office, NASA Goddard Space Flight Centre, Greenbelt, MD, USA

⁽⁴⁾ Department of Earth Sciences, Faculty of Earth and Life Sciences, VU University Amsterdam, Amsterdam, Netherlands

⁽⁵⁾Centre d'Etudes Spatiales de la BIOsphere (CESBIO), Toulouse, France

^(5,*)Now at ADER, UMR-5185, Bordeaux, France

⁽⁶⁾ Research Institute for Geo-Hydrological Protection, National Research Council, Italy

Soil moisture at ECMWF

- Soil Moisture : Essential Climate Variable (GCOS)
 - crucial variable for numerical weather and climate predictions
 - key role in hydrological processes

Soil moisture at ECMWF

- Soil Moisture : Essential Climate Variable (GCOS)
 - crucial variable for numerical weather and climate predictions
 - key role in hydrological processes

Spatial resolution

Soil moisture

- Re-analyses of past land-atmosphere conditions:
 - Major numerical modelling and data assimilation undertaking
 - Re-run every 5 to 10 years (Balsamo et al., 2012)
- Attempt to solve this issue:
- ERA-Interim near-surface meteorology is used as forcing term to produce a new land surface model trajectory based on ECMWF latest LSM improvements: ERA-Land (Balsamo et al., 2012 ERA report serie)
- A revised version of the land component of the MERRA system (NASA GMAO): MERRA-Land ; improved set of land surface hydrological fields (Reichle et al., 2011)

Soil moisture: Spatial Remote Sensing

Spatial Remote Sensing: unique opportunity to observe SM at a global scale

 WACMOS and CCI Soil Moisture projects: merge data from various active and passive microwave sensors to produce the most complete and most consistent global soil moisture data record (1979-2010): SM-MW

http://www.esa-soilmoisture-cci.org/

Soil moisture: Remote Sensing & Modelling

The EUMETSAT Network of Satellite Application Facilities

Evaluation of performances

- One important aspect of the environmental variables retrieval : the evaluation of their performance
- Determine whether their behaviour matches the observations
 Importance of in situ soil moisture

In situ measurement vs. coarse resolution products

- Even if local in situ observations do not measure the same quantity as coarse resolution products, significant correlation can be obtained between the two measures
- Soil moisture variations in space and time are related:
 - Large scale components (atmospheric forcing)
 - Small scale components (soil properties, land cover, topography...)
- Temporal stability concept (Vachaud et al, 1985):
 - → Soil moisture patterns tend to persist in time,
 - Soil moisture observed at a single point is often highly correlated with the mean soil moisture content over an area

Validation strategy : metrics

- R, RMSD, Bias (only cases with significant R, p-value <0.05)
- Normalized standard deviation (SDV), centered unbiased RMSD (E)
- → R, E and SDV are linked and can be displayed on a single diagram easy to interpret; Taylor diagram [E²=SDV²+1-2.SDV.R]

- SDV (σ_{product}/ σ_{insitu}) as a radial distance
- R as an angle
- E the distance to the point 'INSITU'
- R applied on volumetric and anomaly time-series (remove seasonal cycle)

Evaluation of ERA-Land, MERRA-Land & SM-MW

Evaluation of ASCAT, SMOS and SM-DAS-2

Use of ERA-Land to monitor SM-MW

ERA-Land, MERRA-Land & SM-MW

ERA-Land

- Global
- ~80km
- Four times a day (00, 06, 12, 18 h)
- Four layers of soil (0-7, 7-28, 28-100, 100-189cm)
- 1979-2010

http://apps.ecmwf.int/datasets

MERRA-Land

- Global
- 1/2° lat and 2/3° lon
- Hourly
- 2 layers (0-2, 0-100 cm)
- 1979-onward

SM-MW

- Global
- ~25km
- Daily
- 0.5-2 cm
- **1979-2010**

http://gmao.gsfc.nasa.gov /research/merra/ http://www.esasoilmoisture-cci.org/

ERA-Land, MERRA-Land & SM-MW

ERA-Land, MERRA-Land, SM-MW

ERA-Land, MERRA-Land, SM-MW

- The three products capture well the temporal dynamics of the observed surface soil moisture (and that of the root zone for ERA-Land, MERRA-Land)
- If SM-MW agrees well with ground-based observations, its performance stays in most cases behind that of the latest generation of global Land Surface Models
- Interest of SM-MW in areas where land re-analyses might not realistically represent SM (e.g. Maqu network)

Albergel et al., JHM 2013

ASCAT, SMOS & SM-DAS-2 : Data preparation

ASCAT	SM-DAS-2	SMOS	
 Global 	 Global 	 Global 	
~25km	~25km	~43km	

- 2012 times series
 - Index ([-]): SM-DAS-2, ASCAT
 - Volumetric: SM (m³m⁻³): SMOS, in situ
- → Each product is normalized using its own min and max
- ASCAT & SMOS filtered out using ERA-Land ST (<4°C) and snow

- SM-DAS-2 filtered out by its own ST (<4°C)
- In situ measurements are filtered out by their own ST (<4°C)

clement.albergel@ecmwf.int

Correlation [-] (for stations with significant values)							
SM-DAS-2 ASCAT SMOS							
0.64 (111 stations)	0.50 (85 stations)	0.53 (82 stations)					

ASCAT, SMOS & SM-DAS-2- 2012 time series

REMEDHUS

0.0

J F

AMJJASOND

For ASCAT and SMOS green is am, red is pm

ASCAT, SMOS & SM-DAS-2

Correla				• • • • • • • • • • • • • • • • • • •		(210)
	ation		0.68	0	.53	0.53
Bias (in (In Situ - F	dex) Product)		-0.047	-0	.032	0.034
RMSD (i	ndex)		0.230	0.	.246	0.228
Normalized (stations with s	Product	R)	SM-DAS (251)	-2 AS (2	CAT 222)	SMOS (215)
Correlation o	n Anomaly		0.57	0	.39	0.42
	◆ ▲		0 ∆ 2012		* 	, <mark>↓</mark> ↓ ↓
CAN RMD	SMN-W S	SMN-E	UDC	UMS	OZN	AMA
	(In Situ - F RMSD (i Normalized (stations with s Correlation of	(In Situ - Product) RMSD (index) Normalized Product (stations with significant I Correlation on Anomaly	(In Situ - Product) RMSD (index) Normalized Product (stations with significant R) Correlation on Anomaly • 201 • 4 • 4 • 4 • 4 • 4 • 4 • 4 • 4	(In Situ - Product) RMSD (index) Normalized Product (stations with significant R) Correlation on Anomaly 0.57 0.230 SM-DAS (251) 0.57 0.57 0.57 0.57	(In Situ - Product) RMSD (index) 0.230 0. Normalized Product (stations with significant R) 0.57 0 Correlation on Anomaly 0.57 0 0.57	(In Situ - Product) -0.047 -0.032 RMSD (index) 0.230 0.246 Normalized Product (stations with significant R)SM-DAS-2 (251)ASCAT (222)Correlation on Anomaly 0.57 0.39 0.57 0.39 0.57 0.39 0.57 0.47 0.57 0.39 0.57 0.57 0.39 0.57 0.57 0.57 0.57 0.39 0.57 0.5

ECMWF

ASCAT, SMOS & SM-DAS-2

- Stations from 9 networks (USA, France, Spain, Italy, Germany, India, Africa)
- Good performances of the three products to capture surface soil moisture annual cycle, similar for ASCAT & SMOS
- ASCAT & SMOS present better R values for morning passes (not shown)
- Comparison with previous results (2010) suggests ASCAT & SMOS algorithms improvement (2012)
- Future work will investigate the use of ASCAT & SMOS flags (noise, dqx, RFI)

Use of in situ measurements : caveats

- Very useful, however :
- → Long term and large scale ground measurements networks are still sparse
- Different networks will present different characteristics (e.g. measurement methods, installation depths, calibration techniques, temporal/spatial coverage)
- The quality of retrieved soil moisture can be accurately assessed for the locations of the stations
- → Need to conceive new validation methods, complementing the existing soil moisture networks: <u>use of Land Surface Model such as ERA-Land</u>

- ERA-Land adequately captures the temporal dynamic of soil moisture
 - Large scale nature
 - Fixed configuration
 - Global availability
- make it suitable to complement the typical validation approach of soil moisture from remote sensing based on ground measurements

Monitoring of SM-MW performances using ERA-Land: 2 strategies

- Correlations (R) are calculated for 3-yr periods (1980-1982 to 2007-2009)
 - Each sub-periods individually (pixels with significant R)
 - Pixels presenting significant level of correlations for each sub-periods (more coherent evaluation)
- Different products used to develop SM-MW, vary over space and time → potential effects, the evaluation is repeated for the following sub-periods:

Sensor	Passive / Active µwaves	Channel used for soil moisture	Time-period used
SMMR	Passive	6.6 GHz	01/01/1980 - 31/08/1987
SSM/I	Passive	19.3 GHz	01/09/1987 – 30/06/1991
SSM/I & ERS-AMI	Passive & Active	19.3 & 5.3 GHz	01/07/1991 – 31/12/1997
TMI & ERS AMI [40°N, 40°S], of SSM/I & ERS AMI elsewhere	Passive & Active Passive & Active	10.7 & 5.3, 19.3 & 5.3 GHz	01/01/1998 - 31/06/2002
AMSR-E & ERS AMI	Passive & Active	6.9/10.7 & 5.3 GHz	01/07/2002 - 31/12/2006
AMSR-E & ASCAT	Passive & Active	6.9/10.7 & 5.3 GHz	01/01/2007 - 31/12/2010

Pixels that have significant R values (pvalue<0.05) over 1980-2010

Pixels that have significant R values (pvalue<0.05) for each 3-yr sub-periods</p>

 SM-MW is consistent over time with respect to ERA-Land when considering pixels that have significant R-values for each 3-yr sub-periods (<u>in green</u>)

- When considering sub-periods individually (<u>in black</u>)
 - Slightly lower R-value for 2006-2009, explained by the addition of data at high-latitude and high-elevation (e.g. European Alps)
 - → Areas where the quality of the retrieval is lower

- 2- SSM/I
- 3- SSM/I & ERS AMI
- **4-** TMI & ERS AMI [40°N, 40°S], of SSM/I & ERS AMI elsewhere
- 5- AMSR-E & ERS AMI
- 6- AMSR-E & ASCAT

Latitudinal plot of correlations between SM-MW and ERA-Land for blended periods, only pixels that have significant correlation value (p-value<0.05) for each blended periods

- Retrievals more robust at longer wavelengths
- Lowest score for the period based on SSM/I (passive µwave, Ku-band 19.3GHz): radiance emitted from the soil surface at this wavelength strongly attenuated by the vegetation canopy → increased uncertainty of the retrievals over sparsely vegetated & less data available
- Interpretation of the results hampered by the accuracy of the reference dataset (model itself and its inputs)
 - Albergel et al. (2010, HESS, 2012, JHM) found some non-realistic representation of soil moisture (shortcomings in the soil characteristics and pedotransfer functions...), e.g. over the Tibetan plateau
 - ➔ Poor level of correlations in those areas
 - ➔ Is the model OK for high latitude/altitude areas?

Evaluating earth observation soil moisture : My two pennies worth

- R, RMSD and Bias (only cases with significant R, p-value <0.05)
- Normalized standard deviation (SDV: σ_{product}/ σ_{insitu}) and the centered unbiased RMSD (E) → Taylor diagram
- R should be applied on both volumetric and anomaly time series (monthly sliding windows) to remove the seasonal cycle
- Consider soil moisture networks where soil temperature is also available
- Use of ancillary data if available (e.g. ERA-Land temperature and snow)
- Complementing the existing soil moisture networks using (re-)analyses (e.g. ERA-Land, MERRA-Land) to have a global view

Evaluating earth observation soil moisture : My two pennies worth

- Various products; good correlations, high biases and RMSD
- Spatial variability of in situ soil moisture is very high, differences in soil properties → difference in the mean & variance on soil moisture
 - True information of modelled soil moisture does not necessarily relies on their absolute magnitudes but instead on their time variations
 - Soil properties at the station might be not representative of the area observed from space
- R is found to be more relevant than other standard metrics to evaluate earth observation soil moisture data
- Open question : define a better suited measure of accuracy to characterise the quality of soil moisture data (e.g. in areas with very low variability)

Satellite Soil Moisture Validation & Application Workshop 2013 Frascati, Italy1-3 July 2013

Contact : clement.albergel@ecmwf.int

Further reading :

Albergel, C., de Rosnay, P., Gruhier, C., Muñoz-Sabater, J., Hasenauer, S., Isaksen, L., Kerr, Y. & Wagner, W.: Evaluation of remotely sensed and modelled soil moisture products using global ground-based in situ observations. *Remote Sensing of Environment*, 118, 215-226, 2012.

Albergel, C., De Rosnay, P., Balsamo, G., Isaksen, L. & Munoz-Sabater, J.: Soil Moisture Analyses at ECMWF: Evaluation Using Global Ground-Based In Situ Observations. *Journal of Hydrometeorology*, 13, 1442-1460, 2012

Albergel, C., W. Dorigo, R. H. Reichle, G. Balsamo, P. de Rosnay, J. Munoz-Sabater, L. Isaksen, R. de Jeu, and W. Wagner: **Skill and global trend analysis of soil moisture from reanalyses and microwave remote sensing**, *Journal of Hydrometeorology*, doi:10.1175/JHM-D-12-0161.1, 2013. http://journals.ametsoc.org/doi/abs/10.1175/JHM-D-12-0161.1

Albergel, C, W. Dorigo, G. Balsamo, J. Munoz-Sabater, P. de Rosnay, L. Isaksen, L. Brocca, R. de Jeu, and W. Wagner: **Monitoring multi-decadal satellite earth observation of soil moisture products through land surface reanalyses**. *Submitted to Remote Sensing of Environment*, April 2013, RSE-D-13-00279

SMOS : m³m⁻³

2012	SMOS (216)				
Correlation	0.53				
Bias	0.024 (m ³ m ⁻³)				
RMSD	0.105 (m ³ m ⁻³)				

In situ measurement vs. coarse resolution products

- Even if local in situ observations do not measure the same quantity as coarse resolution products (e.g. remotely sensed), significant correlation can be obtained between the two measures
- Soil moisture variations in space and time related:
 - Large scale components (atmospheric forcing)
 - Small scale components (soil properties, land cover, topography...)
- Temporal stability concept (Vachaud et al, 1985): Soil moisture patterns tend to persist in time, soil moisture observed at a single point is often highly correlated with the mean soil moisture content over an area

Validation strategy : metrics

- Monthly anomaly (remove seasonal effects, ability of SM products to reproduce SM short term variability):
 - The difference to the mean is calculated for a sliding window of five weeks and the difference is scaled to the standard deviation
 - For each SM estimate at day (i), a period F is defined, with F=[i-17, i+17]

$$Ano(i) = \frac{SM(i) - \overline{SM(F)}}{stdev(SM(F))}$$

R computed on volumetric and anomaly time-series

Evaluation of SM-MW performances using ERA-Land

- ERA-Land adequately captures the temporal dynamic of soil moisture
 - Large scale nature
 - Fixed configuration
 - Global availability
 - Ability to represent soil moisture variability well
- make it suitable to complement the typical validation approach of soil moisture from remote sensing based on ground measurements

2010: 620 stations from 11 networks;

- R(95%CI)=0.66(±0.08) [(ranging from 0.57(±0.11) for the MAQU network in China to 0.84(±0.03) for the SMOSMANIA network in France],
- RMSD=0.118 m³m⁻³ and Bias=-0.063 m³m⁻³

clen

Evaluation of SM-MW performances using ERA-Land: results

Correlations on anomaly time-series to remove the annual cycle

Averaged correlation values, R, (95% confidence Intervals) between SM-MW and ERA-Land for each blended period. <u>Black dots</u> represent each period considered individually, <u>green dots</u> represent for each periods pixels which have significant R values for all periods (only pixels with significant R values, p-values<0.05)

Averaged correlation values, R, (95% confidence Intervals) between SM-MW and ERA-Land for each 3-yr sub-periods within 1980-2010. <u>Black dots</u> represent each period considered individually (only pixels with significant R values, p-values<0.05), <u>green dots</u> represent for each periods pixels which have significant R values for all periods

Correlations value between SM-MW and ERA-Land for the 6 blended periods considered individually. Only significant level of correlations, p-value<0.05

ASCAT, SMOS & SM-DAS-2

- Very good agreement in the tropics and close to the Equator, all over Australia and south Russia
- SM-MW is consistent over time with respect to ERA-Land when considering pixels that have significant R-values for each 3-yr sub-periods

ERA-Land	1980-	1983-	1986-	1989-	1992-	1995-	1998-	2001-	2003-	2006-	1980-
vs. SM-MW	82	85	88	91	94	97	00	03	05	09	2010
R	0.59	0.57	0.52	0.52	0.57	0.56	0.61	0.62	0.66	0.66	0.60
(95% <i>C</i> I)	(±0.11)	(±0.11)	(±0.10)	(±0.10)	(±0.08)	(±0.08)	(±0.06)	(±0.07)	(±0.05)	(±0.04)	(±0.02)
RMSD m ³ m ⁻³	0.100	0.101	0.104	0.105	0.103	0.104	0.098	0.096	0.095	0.094	0.099
Bias m ³ m ⁻³	0.005	0.008	0.004	0.005	0.002	0.008	0.006	0.008	0.007	0.003	0.005

When considering sub-periods individually, slightly lower R-value for 2006-2009, explained by the addition of data at high-latitude and high-elevation (e.g. European Alps) → areas where the quality of the retrieval is lower

