

European research opportunities and priorities for the next generation of meteorological satellites

Presenter: Bojan R. Bojkov Convener: Stephan Bojinski

EGU2020 Sharing Geoscience Online Townhall Meeting (TM7) 29 April / 5 May 2020

EUMETSAT Missions – current and future

EUMETSAT Metop-series provides data to Numerical Weather Prediction (NWP)

NOAA-EUMETSAT (IJPS) contribution to the forecasting of IRMA (Aug. 2017)

ch 2019

EUMETSAT

The operational capability of a two Meteosat satellite system: monitoring thunderstorms over Spain

15-minute scan

5-minute scan

Meteosat in support for aviation

Eyjafjallajökull ash cloud from 7 to 11 May 2010 (second eruption)

Complementarity Capabilities: Aerosol Optical Depth (AOD) from Australian Fires as seen by Metop (and Sentinel-3)

Carbon Monoxide from IASI on Metop-A/B/C: Australian Fires (6-13 January 2020)

SM2RAIN: precipitation from SCAT soil moisture data

- Application: SM2RAIN algorithm (Brocca, *et al.*, 2013, 2014) using ASCAT soil moisture data from H-SAF
- Based on the inversion of the soil water balance equation, i.e. it estimates the rainfall by using the change in time of the amount of water stored in to the soil, thus considering it "as a natural rain gauge"

Courtesy: Luca Brocca, CNR

IDAI over Mozambique (8-18 March 2019) as seen by SM2RAIN

EUMETSAT

The MTG and EPS-SG – the European context

- The Meteosat programme (incl. the future MTG) is recognised as a European success story and a European Asset by the <u>EU Space Strategy</u> adopted in October 2016
- The MTG and EPS-SG programmes have been funded by the 30 EUMETSAT Member States (most of them EU Member States) at a level of <u>7 Billion Euros</u> <u>through the 2040s.</u> ESA also contributes to the funding of these programmes for the development of the prototype satellites
- The first satellites of the MTG and EPS-SG programmes will be launched in the 2021 / 2022 timeframe (nb in the time frame of Horizon Europe)

Severe hail storms prediction with IASI: Bordeaux Cognac 26/05/2018 (Nowcasting preparation for Meteosat Third Generation)

3D wind product demonstration for MTG/IRS

Based on Metop IASI Level-2 products:

- Water vapour, ozone, and temperature concentrations patterns are tracked between two successive images
- Troposphere and low stratosphere
- High-latitude regions (~45 deg. polewards)
- Dual operation: *Metop-A* + *Metop-B*

Global product:

- Tracking based only on data
- No circulation model embedded
- Levels consistency ensured by the full global inversion
 → wind profiles retrieved at each point location

NH_20170321004609Z_M02_54062

Ammonia emissions from IASI \rightarrow future monitoring from MTG and EPS-SG

Ammonia emission fluxes calculated based on almost a <u>decade of IASI measurements</u> (Martin Van Damme and Lieven Clarisse / ULB → see Nature paper, December 2018)

- Ammonia affects air quality and has implications for human health and life expectancy.
- Excess ammonia in the environment also contributes to the acidification and eutrophication of ecosystems and to climate change

MTG/IRS will measure Europe every half hour with a ~4-8km resolution.

Snow Cover/Extent Demonstrator for EPS-SG METimage

- SEDOS study lead by ENVEO GmbH (A)
- Demonstrator for EPS-SG METimage using Sentinel-3 SLSTR/OLCI
- Close cooperation on Cal/Val foreseen with the EUMETSAT H-SAF
- Right: Sentinel-3A Fractional Snow Extent, 500 m (21-23 April 2018)

From MSG SEVIRI to MTG FCI (simulated data)

Water turbidity parameters demo using MSG SEVIRI

EUMETSAT study, Feb. 2015 – Mar. 2016 • User Requirements analysis Prototype Processor development and validation East Anglian Plume The plume constitutes a major feature transporting sediment across the North Sea MSG SEVIRI water turbidity validation West Gabbard Smartbuoy station MODIS MERIS

MSG SEVIRI water turbidity, July 2008 [Nephelometric Turbidity Units (NTU)]

Development endorsed by CMEMO				
User Applications	Parameter	Best Spatian Resolution	Resolution	Accuracy
Coastal water quality (EU MSFD)	TUR, SPM, SD	300m-1km	1h – 10y+	threshold
Nater quality of European lakes EU WFD)	TUR, SD, XCYA	300m-1km	1h – 10y+	threshold
Coastal water quality - Africa	TUR, SD, XHAB	~1km	1h – 10y+, NRT	scientifically sound
Nater quality of African lakes	TUR, SD, XCYA	300m-1km	1h – 10y+	scientifically sound
Sediment transport	TUR, SPM	10m-1km	1h – 10y+	absolute
Ecosystem modelling eutrophication)	KdPAR/ZE, SPM	1-10km	1h – 10y+, some NRT	uncertainty per pixel
Offshore diving operations	TUR (HVIS)	1-100m?	10m – 6h, NRT	scientifically sound
Carbon burial by coccolithophores	COCCO	~10km?	1h – 10y+	unknown
Support for OC validation	Rrs	300m-1km	5m – 10y+	absolute

MTG/FCI AOD preparations: understanding GRASP using S3/OLCI

Monthly Average July 2018

MODIS Terra AOD(550 nm)

Lightning monitoring: an example NOAA/GOES-16 (R)

Implementing the 4D weather cube with MTG...

R&D needed: synergy of EPS-SGA instruments...

Cal/Val, Reprocessing, and Climate Records

EUM/RSP/VWG/19/1070329, v1 Draft, 25 March 2019 22

20

-20

Example: Altimeter Interoperability

sea level anomaly (cm)

MTG and EPS-SG & Research and Development

- MTG and EPS-SG are operational programmes each guaranteeing more than 20 years of observations to the European providers of weather and environment information services but also to the European Science and Climate research <u>Communities</u>
- The MTG and EPS-SG satellites will fly highly <u>innovative</u> instruments developed by European industry, several being even "world première": there will therefore be a need for investing in R&D activities to get the most out of these new data, and to create innovation through their use, alone or in combination with other data
- The <u>Copernicus Sentinel-4 and Sentinel-5 air quality missions will be implemented</u> <u>as part of the MTG and EPS-SG satellite systems</u>, by additional instruments on board the MTG and Metop-SG satellites, to be used in synergy with EUMETSAT instruments: this offers unique opportunities for developing innovative multi-sensor products for the monitoring of the atmosphere, the oceans and climate change

MTG and EPS-SG & Research and Development (ii)

- Data from EUMETSAT instruments to be used in combination with data from Sentinel-4/-5 instruments will be available free of charge to Copernicus, as per agreements signed with the EC, and all MTG and EPS-SG data are expected to be available free of charge for research purposes, in line with the current EUMETSAT Meteosat and EPS Data Policies
- The applications of MTG and EPS-SG, which are <u>science-driven</u>, have <u>high</u> <u>societal and economic impact</u> (EPS-SG alone has an impact of 5 BEUR per year to the EU economy), *i.e. weather forecasts to protect lives, properties and infrastructures, support to transport, monitoring of pollutions, trace gases and GHG, contribution to climate monitoring, …*
- MTG and EPS-SG data, as well as from precursor missions such as for example Sentinel-3, are of high relevance to research and development

Contact User Support:

The EUMETSAT User Service Helpdesk can answer your questions regarding MTG and EPS-SG \rightarrow Contact our team at <u>ops@eumetsat.int</u>

or visit:

https://www.eumetsat.int

Save the date: 2021 MTG and EPS-SG User Days

22-24 June 2021 Darmstadt, Germany

Key audiences:

- National meteorological and environmental services
- Research and academia

Thank you for your attention!

27 EUM/RSP/VWG/19/1070329, v1 Draft, 25 March 2019

EUMETSAT

BACKUP / Miscellaneous

Meteosat Third Generation: Imaging mission (MTG-I)

- Imagery mission implemented by two MTG-I satellites
- Full disc imagery every 10 minutes in 16 bands & fast imagery of Europe every 2.5 minutes (Flexible Combined Imager, FCI)
- New Lightning Imager (LI)
- Operational exploitation: 2022-2042

Meteosat Third Generation: Sounding mission (MTG-S)

- Hyperspectral infrared sounding mission (IRS)
- 3D weather cube: temperature, water vapour, O3, every 30 minutes over Europe
- Air quality monitoring and atmospheric chemistry in synergy with Copernicus Sentinel-4 instrument
- Operational exploitation: 2024-2043

EPS-SG: Metop-SG satellites

EPS-SG benefits to activities of users

Main Payload	Enhanced Capabilities	Innovative Capabilities	Applications Benefiting
High-Resolution Infrared Sounding (IASI-NG)	+75% information in temperature profiles +30% in humidity-profiles	More trace gases and their vertical profiles	NWP, NWC, AC, CM, Oceanography
Microwave Sounding (MWS)	Enhanced spatial over-sampling	Ice-cloud info in support of water- vapour profiling	NWP, NWC, CM, Hydrology
Radio Occultation Sounding (RO)	Large increase of number of radio-occultations	Tracking of Galileo, Beidou and QZSS signals	NWP, CM
Nadir viewing UV/VIS/NIR/SWIR Sounding (UVNS/Sentinel-5)	Drastic increase of spatial resolution	Additional trace gas measurements; CO ₂ being studied	Air Quality, CM, AC
VIS/IR Imaging (METimage)	Better radiometric and spatial resolution	Far more variables measured with higher accuracy	NWC, NWP, CM, Land-surface analysis, Oceanography, Hydrology
Scatterometry (SCA)	Higher spatial resolution and coverage	Cross polarisation for higher wind speeds	NWP, NWC, CM, Hydrology, Oceanography
Multi-viewing, -channel, - polarisation Imaging (3MI)	New mission	Aerosol parameters	Air quality, CM, NWC, Land surface analysis
Microwave Imaging (MWI)	New mission	Precipitation observations	NWP, NWC, Hydrology, CM, Oceanography
Ice Cloud Imaging (ICI)	New mission	Cloud microphysics parameters	NWP, NWC, Hydrology, CM

NWP: Numerical Weather Prediction; NWC: Nowcasting; CM: Climate Monitoring; AC: Atm. Composition

EPS-SG Sounding Missions

Main Payload	Heritage	Applications Benefiting
High-Resolution Infrared Sounding (IASI-NG)	IASI	NWP, NWC, AC, CM, Oceanography
Microwave Sounding (MWS)	AMSU-A and MHS	NWP, NWC, CM, Hydrology
Radio Occultation Sounding (RO)	GRAS	NWP, CM
Nadir viewing UV/VIS/NIR/SWIR Sounding (UVNS/Sentinel-5)	GOME-2	Air Quality, CM, AC

NWP: Numerical Weather Prediction; NWC: Nowcasting; CM: Climate Monitoring; AC: Atm. Composition

All missions on SAT-A, RO on both satellites

EPS-SG Imaging Missions

Main Payload	Heritage	Applications Benefiting
VIS/IR Imaging (METimage)	AVHRR	NWC, NWP, CM, Land-surface analysis, oceanography, hydrology
Scatterometry (SCA)	ASCAT	NWP, NWC, CM, hydrology, oceanography
Multi-viewing, -channel, -polarisation Imaging (3MI)	New mission	Air quality, CM, NWC, Land surface analysis
Microwave Imaging (MWI)	New mission	NWP, NWC, Hydrology, CM, Oceanography
Ice Cloud Imaging (ICI)	New mission	NWP, NWC, Hydrology, CM

NWP: Numerical Weather Prediction; NWC: Nowcasting; CM: Climate Monitoring; AC: Atm. Composition

MetImage and 3MI on board EPS-SGa SCA, MWI, ICI on board EPS-SGb

The EPS-SG 3MI mission

- 3MI currently under implementation phase by ESA/EUMETSAT - Launch on METOP-SG expected end of 2022
- An aerosol dedicated mission with advanced cloud observing capabilities
- 3MI builds on POLDER / MODIS heritage
- How and why 3MI brings innovation ?

EPS-SG 3MI: a new vision of the atmosphere

- The 3MI hyper-pixel contains multi-spectral, multi-polarisation, multi-angle and multi-resolution data.
- Will need R&D to fully exploit, tools to handle the complex data, and end-user training.

EPS-SG ICI will fill an observational gap

Submm waves sense different particle sizes and fill the gap between IR and radar

New capabilities of MTG for climate monitoring

- By 2040 Meteosat imaging provides >60 years time series;
- Improved imaging capability contributes to:
 - research on the global circulation (storm tracks including hurricanes, life cycle of storms, long term change in polar front position, etc.);
 - better fire detection products and an increase in the quality of climate-relevant products such as fire radiative energy and power, which can be used to calculate carbon dioxide emissions from fires.
- MTG IR sounder opens new opportunities:
 - for 3D AMV time series in conjunction with IASI/IASI-NG and AVHRR/MetImage contributing to research on global circulation;
 - for reanalyses with NWP models operating at regional scale and assimilating high resolution temperature, humidity and cloud information.
- Lightning imager may contribute to quantification of naturally occurring NO_x to better estimate additional aircraft-induced NO_x;
- The frequency, intensity, and duration of extreme weather events is changing as our climate changes. Improved spatiotemporal
 sampling addresses analysis of extreme events at local scale and provides statistics on long term;
- Hurricane research in combination with altimetre and passive microwave imaging (wave height, wind speed, rain, SST) measurements.

EPS Second Generation – Instruments' Heritage

Metop-SG A Optical Imagery and Sounding	Instrument	Predecessor on Metop	Predecessor
Infrared Atmospheric Sounding (IASI)	IASI-NG	IASI	AIRS, HIRS
Microwave Sounding (MWS)	MWS	AMSU-A, MHS	MSU, AMSU-B, ATMS
Visible-infrared Imaging (VII)	METimage	AVHRR	AVHRR&VHRR
Radio Occultation (RO)	RO	GRAS	CHAMP, COSMIC
UV/VIS/NIR/SWIR Sounding (UVNS)	Sentinel-5	GOME-2	GOME
Multi-viewing, -channel, -polarisation Imaging (3MI)	3MI	-/-	POLDER

Metop-SG B	Instrument	Prodocessor on Moton	Prodococcor	
Microwave Laboratory	instrument		Freuecessor	
Scatterometer (SCA)	SCA	ASCAT	ERS-1 Scat	
Radio Occultation (RO)	RO	GRAS	CHAMP, COSMIC	
Microwave Imaging for Precipitation (MWI)	MWI	-/-	SSMIS, SSM/I, SMMR	
Ice Cloud Imager (ICI)	ICI	-/-	-/-	
Advanced Data Collection System (ADCS)	Argos-4	A-DCS	Argos/DCS	

New capabilities of EPS-SG for climate monitoring

- Addressing key questions about how changing cloud cover and precipitation will affect climate, weather, and Earth's energy balance in the future, advancing understanding of the movement of air and energy in the atmosphere and its impact on weather, precipitation, and severe storms (all instruments also in combination with MTG and other missions);
- Understanding the effect of clouds on the radiative heating of Earth's atmosphere (MetImage, IASI-NG, 3MI, ICI, MWI);
- Understanding of aerosols and their influences on clouds (MetImage, IASI-NG, 3MI, ICI, MWI) consistently monitoring the distribution of aerosols and clouds with potential to support development of climate model parameterizations;
- Increased knowledge of rain formation processes in clouds (3MI, MWI, ICI);
- Provision of cloud and aerosol information to specific convective systems, e.g., MCS, exporing the role of such systems for extreme precipitation distribution and impacts on radiation budget (3MI, MetImage, ICI) together with MTG imaging capability;
- Tracking land use change and ecosystem responses to climate variations, which improve the understanding of the carbon cycle, while methods to quantify carbon stocks and fluxes are rapidly evolving (MetImage, SCA).
- Continuation of daily observations documenting the reductions in Arctic sea-ice extent and thinning of multi-year ice (MWI, VII);
- Monitoring changes in the atmospheric composition and geographical distributions of climate-influencing atmospheric trace gases (S5 UVNS);
- Analysis of changes in surface properties, e.g., due to impacts of changing cloud cover and precipitation and consequences for radiation budget, aerosol load, etc. (MetImage, 3MI, MWI, ICI).