Assimilation of L-band brightness temperatures in the ECMWF Land Data Assimilation System

J. Muñoz Sabater

P. de Rosnay, C. Albergel, G. Balsamo, L. Isaksen, S. Boussetta and M. Drusch

European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK & European Space Agency, Noordwijk, The Netherlands

Objectives at ECMWF (I): Monitoring

Routinely production of statistics with SMOS T_B, model equivalents and background departures, <u>in NRT</u>

- Global scale
- · Land and oceans separately,
- Several incidence angles [10, 20, 30, 40, 50, 60],
- Two polarisations states [XX, YY],
- · Independently per continents and hemispheres,

Statistical products,

- · Time-averaged geographical mean-fields (last 6 weeks of data),
- · Hovmöller zonal mean fields (last 3 months),
- Time series of area averages (last 3 months),
- Angular distribution of bias: background departures as function of incidence angle (last 5 weeks).
- Support to CAL/VAL sites → time series produced for 17 sites

564 images are produced and updated daily \rightarrow important contribution to the SMOS quality control

[http://old.ecmwf.int/products/forecasts/d/charts/monitoring/satellite/smos/]

Objectives at ECMWF (II): Assimilation

- Assimilation of SMOS $\rm T_B$ over continental surfaces & investigate the meteorological impact of SMOS data assimilation

Simplified Extended Kalman Filter:

For each grid point, analysed state vector \boldsymbol{x}_{a} :

 $\boldsymbol{x}_{a} = \boldsymbol{x}_{b} + \boldsymbol{K} (\boldsymbol{y} - \mathcal{H}[\boldsymbol{x}_{b}])$

- **x**_b : background state vector,
- y : observation vector
- ${\mathcal H}\,$: non linear observation operator
- **K** : Kalman gain matrix: $\mathbf{K} = [\mathbf{B}^{-1} + \mathbf{H}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{H}]^{-1} \mathbf{H}^{\mathsf{T}} \mathbf{R}^{-1}$

Observations:

- Screen level variables: T^{2m}, RH^{2m}
- Remote sensing data:
 - ASCAT soil water index (METOP-A, METOP-B),
 - SMOS Brightness temperatures

LSM : HTESSEL 0-7cm, 7-28cm, 28-100cm, 100-289cm

3

Summer validation (JJA); top layer (0-7 cm)

- SLV: assimilation of T^{2m}, RH^{2m}
- assimilation of only SMOS T_B CDF corrected • SMOS:
- SMOS+SLV: assimilation of T^{2m}, RH^{2m} and SMOS T_R CDF
- Validation undertaken over significant stations (p-value<0.05) in 8 countries

- \rightarrow The worst among the 3 expt.
- → Neither the best nor the worse

	SL\	/	
Network	Bias	RMSD	R
SMOSMANIA	-0.017	0.067	0.77
TWENTE	0.024	0.097	0.77
SCAN	-0.088	0.137	0.55
USCRN	-0.079	0.115	0.67
MAQU	0.027	0.067	0.75
SWATMEX	-0.080	0.095	0.80
VAS	-0.082	0.105	0.48
OZNET	-0.104	0.122	0.69
REMEDHUS	-0.065	0.093	0.57
UMBRIA	-0.153	0.159	0.65
HOBE	-0.052	0.076	0.70

Bias	RMSD	R
-0.043	0.085	0.71
-0.013	0.099	0.71
-0.076	0.132	0.55
-0.072	0.116	0.64
0.064	0.089	0.79
-0.126	0.138	0.74
-0.072	0.079	0.53
-0.098	0.118	0.72
-0.058	0.080	0.73
-0.207	0.210	0.47
-0.031	0.066	0.57

SMOS + SLV

Bias	RMSD	R	Ν
-0.015	0.064	0.78	9
0.005	0.095	0.76	18
-0.082	0.135	0.57	98
-0.074	0.115	0.69	61
0.026	0.067	0.74	16
-0.082	0.098	0.79	8
-0.085	0.099	0.59	1
-0.104	0.122	0.71	30
-0.068	0.092	0.61	17
-0.153	0.159	0.67	2
-0.033	0.067	0.69	30

Bias (m^3m^{-3}) ; RMSD (m^3m^{-3})

3

Summer validation (JJA) ; root-zone (0-100 cm)

- SLV: assimilation of T^{2m}, RH^{2m}
- SMOS: assimilation of only SMOS T_B CDF corrected
- SMOS+SLV: assimilation of T^{2m}, RH^{2m} and SMOS T_B CDF corrected
- > Validation undertaken over 77 (SCAN) and 50 (USCRN) stations (p-value<0.05)
- > Observations are averaged over 5, 10, 20, 50 cm (and 100 cm also for USCRN)
- > Model SM is averaged over the three layers (7, 28, 100 cm)

Soil moisture forecast impact

Primary objective achieved!

- Impact on soil moisture is high!,
- SM dynamic is improved and bias reduced,
- Root-zone is better characterised,
- Skill on the forecast of soil moisture improved at least up to 72 h.

Link soil moisture – weather/climate change

from Seneviratne et al., ESR (2010)

- Areas of strong coupling soil-atmosphere occurs in transitional regimes,
- Where SM strongly constrains ET variability and ET rates are large, thus resulting on strong feedbacks to the atmosphere

Link soil moisture – weather/climate change

from Seneviratne et al., ESR (2010)

- Areas of strong coupling soil-atmosphere occurs in transitional regimes,
- Where SM strongly constrains ET variability and ET rates are large, thus resulting on strong feedbacks to the atmosphere

Impact on the forecast skill

 \rightarrow Large SMOS increments produce warmer and drier atmosphere in center US, Sahel, South of Africa and Australia \rightarrow hot-spots for NWP impact,

 \rightarrow Small impact in the skill of the forecast by assimilating SLV+SMOS.

8

SMOS DA impact experiments - Diagnostics

SMOS DA impact experiments - Diagnostics

SMOS DA impact experiments

- → The radiometric accuracy was used as best estimate of the SMOS observation error,
- \rightarrow The soil moisture background error is fixed to 0.01 m³m⁻³ for all grid-points and layers

Sensitivity experiments

Investigate the effect of various types of assimilated observations, the assimilation approach and the observation (\mathbf{R}) and background error (\mathbf{B}) specification in the analysis of SM

Atmospheric scores

Anomaly correlation of the forecast

Temperature

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Sensitivity experiments - Summer validation (JJA)

USCRN	Bias (m ³ m ⁻³)	RMSD (m ³ m ⁻³)	R	Ν
Direct Ins	-0.099	0.116	0.71	58
SMOS + R	-0.086	0.113	0.69	58
SMOS+2R	-0.096	0.117	0.74	58

SCAN	Bias (m ³ m ⁻³)	RMSD (m³m⁻³)	R	N
Direct Ins	-0.051	0.106	0.68	83
SMOS + R	-0.032	0.101	0.69	83
SMOS+2R	-0.044	0.104	0.72	83

Only stations with significant correlation values Confidence 95% (p-value < 0.05)

\rightarrow Good impact of SMOS+2R in the root-zone (R)

→ Doubling SMOS observation error and introducing soil texture information in the background error, in combination with SLV, could improve land and atmospheric scores in certain areas

Preparation for operational use

CTRL: T^{2m}, RH^{2m}, ASCAT SWI

Observation error (R):

- $T^{2m} \rightarrow \sigma(T_{2M}) = 1 \text{ K};$
- $RH^{2m} \rightarrow \sigma(RH_{2M}) = 4\%;$
- ASCAT SWI $\rightarrow \sigma(SM_{ASCAT}) = 0.05 \text{ m}^3\text{m}^{-3}$
- SMOS $T_B \rightarrow \sigma(T_B) = 6 + p \cdot rad_acc K$

VIVI EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Atmospheric scores

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Atmospheric scores

Difference in RMS error normalised by RMS error of control

 SMOS data successfully integrated into the ECMWF coupled land-atmospheric forecasting system and land data assimilation scheme,

- SMOS data successfully integrated into the ECMWF coupled land-atmospheric forecasting system and land data assimilation scheme,
- Boreal summer expts:

→ Positive results in terms of shallow, root-zone soil moisture analysis and forecasts,

→ But limited atmospheric impact (with possible degradations)

- SMOS data successfully integrated into the ECMWF coupled land-atmospheric forecasting system and land data assimilation scheme,
- Boreal summer expts:

 \rightarrow <u>Positive results in terms of shallow, root-zone soil moisture</u> analysis and forecasts,

- \rightarrow But <u>limited atmospheric</u> impact (with possible degradations)
- Diagnostics and sensitivity experiments → The use of SMOS T_B in the ECMWF forecasting system should be optimised,
 - → The integration of SMOS T_B in the ECMWF operational LDAS is plausible and it is a current extended objective,
 - → Only SMOS "observable" very close to operational use, but…
 - → <u>Testing over long-term periods is needed</u>,

- SMOS data successfully integrated into the ECMWF coupled land-atmospheric forecasting system and land data assimilation scheme,
- Boreal summer expts:

 \rightarrow <u>Positive results in terms of shallow, root-zone soil moisture</u> analysis and forecasts,

- → But limited atmospheric impact (with possible degradations)
- Diagnostics and sensitivity experiments → The use of SMOS TB in the ECMWF forecasting system should be optimised,
 - → The integration of SMOS T_B in the ECMWF operational LDAS is plausible and it is a current extended objective,
 - → Only SMOS "observable" very close to operational use, but...
 - → <u>Testing over long-term periods is needed</u>,
- Other components (bias correction, quality control) could be fine-tuned to optimise the use of SMOS in the assimilation system.
 - \rightarrow Influence in extended range forecasts?

Perspectives

- New soil moisture product in Near-Real-Time under implementation,
 - → Collaboration ECMWF-CESBIO-ESA
 - → Based on a Neural Network,
 - → Very similar to the current operational but in Near Real Time,
 - \rightarrow With only 6 Tb, 6 indexes and soil temperature good quality product.
- To come up...
 - SMOS-hurricanes
 - \rightarrow Value of SMOS wind product under tropical storms/hurricane conditions.
 - → Aligned with SMOS+storms evolution project,
 - → Based on the hurricane wind speed database from SMOS+storms,
 - \rightarrow Focus primarily on case studies.
 - Currently defining new studies (sea-ice, extreme-winds, salinity,...)

IGARSS Symposium Milan 26-31 July 2015

Thanks for your attention !

contact: joaquin.munoz@ecmwf.int

Further information:

SMOS online monitoring in NRT: http://www.ecmwf.int/products/forecasts/d/charts/monitoring/satellite/smos/

ECMWF SMOS website: http://www.ecmwf.int/research/ESA_projects/SMOS/index.html

ECMWF CMEM website:

http://www.ecmwf.int/research/data_assimilation/land_surface/cmem/cmem_index.html

Sensitivity experiments

Investigate the effect of various types of assimilated observations, the assimilation approach and the observation (**R**) and background error (**B**) specification in the analysis of SM

- \succ USA \rightarrow best place for availability of observations and "cheaper" experiments,
- > Period: 15 Sept- 14 Oct 2012 \rightarrow recharge period, good variability of soil moisture,
- Full coupled land-atmospheric system,
- > 3 angles (30, 40, 50), 2 polarisations (XX, YY), AF-FOV, RFI flag,
- Physics of cy40r1,
- Reduced observing system for the upper-air atmosphere; ATOVS, GBRAD and NEXRAD observations used to limit number of observations, and still reasonable atmospheric constrain.
- R: σ(T^{2m}) =2 K; σ(RH^{2m})=10%; σ(SMOS)≈rad_acc K
- > **B**: $\sigma(\text{sm}_{(0-7) \text{ cm}}) = \sigma(\text{sm}_{(7-28) \text{ cm}}) = \sigma(\text{sm}_{(28-100) \text{ cm}}) = 0.01 \text{ m}^3\text{m}^{-3}$
- > **Q**: $\sigma(sm) = 0.01 \text{ m}^3 \text{m}^{-3}$

