Use of SMOS data in a coupled landatmospheric model

sensitivity to different model and observation error scenarios

J. Muñoz Sabater

European Centre for Medium-Range Weather Forecasts (ECMWF), Reading, UK

P. de Rosnay, C. Albergel, G. Balsamo, L. Isaksen, M. Drusch and many other

SMOS & ECMWF

> **<u>Mission objective</u>**: Provide global measurements of two key variables in the water cycle: soil moisture and ocean salinity.

L-band mission (innovative 2D interferometric radiometer); transparent to clouds, large penetration depth, less sensitive to vegetation canopy and soil roughness.

<u>Objectives at ECMWF:</u>

- Global monitoring of T_B at the satellite antenna reference frame, in NRT
- Assimilation of SMOS T_B over continental surfaces & investigate the meteorological impact of SMOS data assimilation
- Introducing new observations is an efficient way to improve the forecast/analysis

2

Monitoring SMOS TB

Routinely production of statistics with SMOS T_B, model equivalents and background departures, <u>in NRT</u>

- Global scale
- · Land and oceans separately,
- Several incidence angles [10, 20, 30, 40, 50, 60],
- Two polarisations states [XX, YY],
- · Independently per continents and hemispheres,

Statistical products,

- Time-averaged geographical mean-fields (last 6 weeks of data),
- · Hovmöller zonal mean fields (last 3 months),
- Time series of area averages (last 3 months),
- Angular distribution of bias: background departures as function of incidence angle (last 5 weeks).
- Support to CAL/VAL sites → time series produced for 17 sites

564 images are produced and updated daily \rightarrow important contribution to the SMOS quality control

[http://old.ecmwf.int/products/forecasts/d/charts/monitoring/satellite/smos/]

SMOS & ECMWF

> **<u>Mission objective</u>**: Provide global measurements of two key variables in the water cycle: soil moisture and ocean salinity.

L-band mission (innovative 2D interferometric radiometer); transparent to clouds, large penetration depth, less sensitive to vegetation canopy and soil roughness.

<u>Objectives at ECMWF:</u>

- Global monitoring of T_B at the satellite antenna reference frame, in NRT
- Assimilation of SMOS T_B over continental surfaces & investigate the meteorological impact of SMOS data assimilation

Introducing new observations is an efficient way to improve the forecast/analysis

Soil moisture analysis at ECMWF

Simplified Extended Kalman Filter:

For each grid point, analysed state vector \boldsymbol{x}_a :

 $\boldsymbol{x}_{a} = \boldsymbol{x}_{b} + \boldsymbol{K} (\boldsymbol{y} - \mathcal{H}[\boldsymbol{x}_{b}])$

- **x**_b : background state vector,
- y : observation vector
- ${\mathcal H}\,$: non linear observation operator
- K : Kalman gain matrix

 $\mathbf{K} = [\mathbf{B}^{-1} + \mathbf{H}^{\mathsf{T}} \mathbf{R}^{-1} \mathbf{H}]^{-1} \mathbf{H}^{\mathsf{T}} \mathbf{R}^{-1}$

Observations:

- Operations: screen level variables (SLV): T^{2m}, RH^{2m}
- Research:
 - ASCAT soil water index (METOP-A, METOP-B),
 - SMOS Brightness temperatures

LSM : HTESSEL 0-7cm, 7-28cm, 28-100cm, 100-289cm (*Balsamo et al., JHM, 2009*)

SM analyses were validated against more than 600 in-situ stations in 10 different countries:

- Impact on soil moisture is high!,
- SM dynamic is improved and bias reduced,
- Root-zone is better characterised,
- Skill in the forecast of soil moisture is kept at least up to 72 h.

24/12/2021

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

5

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

6

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

FUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

24/12/2021

Impact in the forecast skill

 \rightarrow SMOS increments produce warmer and drier atmosphere in center US, Sahel, South of Africa and Australia \rightarrow hot-spots for NWP impact,

 \rightarrow Small impact in the skill of the forecast by assimilating SLV+SMOS.

24/12/2021

7

Sensitivity experiments

Investigate the effect of various types of assimilated observations, assimilation approach and observation (**R**) and background error (**B**) specification in the soil moisture analysis.

- \succ USA \rightarrow best place for availability of observations and "cheaper" experiments,
- ▶ Period: 15 Sept- 14 Oct 2012 \rightarrow recharge period, good variability of soil moisture,
- Full coupled system,
- 3 angles (30, 40, 50), 2 polarisations (XX, YY), AF-FOV, RFI flag,
- Physics of cy40r1,
- Reduced observing system for the upper-air atmosphere; ATOVS, GBRAD and NEXRAD observations used to limit number of observations, and still reasonable atmospheric constrain
- > **R** cov matrix: $\sigma(T^{2m}) = 2 \text{ K}; \sigma(RH^{2m}) = 10\%; \sigma(SMOS T^B) = rad_acc \text{ K}$
- > **B** cov matrix: $\sigma(sm_{(0-7) \text{ cm}}) = \sigma(sm_{(7-28) \text{ cm}}) = \sigma(sm_{(28-100) \text{ cm}}) = 0.01 \text{ m}^3\text{m}^{-3}$
- > **Q** cov matrix: $\sigma(sm) = 0.01 \text{ m}^3 \text{m}^{-3}$

Experiment types

• OL → free soil moisture run,

- SLV \rightarrow assimilation of only T^{2m}, RH^{2m} (simulate surface operational conditions)
- SLV+SMOS \rightarrow assimilation of T^{2m}, RH^{2m} and SMOS T_B with **B** static
- **SMOS** \rightarrow assimilation of only SMOS T_B with **B** static
- SMO3 PDI \rightarrow pseudo direct-insertion of SMOS T_B. SEKF filters still apply to increments and departures
- SMOS 2R \rightarrow assimilation of only SMOS T_B, doubling the observation error (2R),
- SMOS B-prop \rightarrow assimilation of only SMOS T_B with B propagated between two cycles. Background error

grows along the assimilation window

SMOS B-text → assimilation of of

Type of assimilated observation

 $(0.02 \text{ m}^3\text{m}^3)$, or 20 mm for the 1st meter of soil.

•SMOS 3DB \rightarrow an 3D structure background error is assumed. The model top layer is more affected by short term variability and more sensitive to precipitation errors \rightarrow 20% of WHC for top layer (~ 0.04 m³m⁻³ for medium-type soil), 10% of WHC for 2nd layer and 5% of WHC for 3rd more stable layer.

Experiment types

- OL → free soil moisture run,
- SLV \rightarrow assimilation of only T^{2m}, RH^{2m} (simulate surface operational conditions)
- **SLV+SMOS** \rightarrow assimilation of T^{2m}, RH^{2m} and SMOS T_B with **B** static
- SMOS B-fix \rightarrow assimilation of only SMOS T_B with B static
- SMOS PDI \rightarrow pseudo direct-insertion of SMOS T_B. SEKF filters still apply to increments and departures
- SMOS 2R \rightarrow assimilation of only SMOS T_B, doubling the observation error (2R),
- SMOS B-prop \rightarrow assimilation of only SMOS T_B with B propagated between two cycles. Background error grows along the assimilation window. Model error was set to 0.01 m³m⁻³,
- SMOS B-text \rightarrow assimilation of only SMOS T_B; background error is defined as a proportion of the water

holding capacity (WHC). For a mediu

(0.02 m³m⁻³), or 20 mm for the

Weight given to SMOS observations

•SMOS 3DB \rightarrow an 3D structure background error is assumed. The model top layer is more affected by short form term variability and more sensitive to precipitation errors \rightarrow 20% of WHC for top layer (~ 0.04 m³m⁻³ for mediumtype soil), 10% of WHC for 2nd layer and 5% of WHC for 3rd more stable layer.

Experiment types

OL → free soil moisture run

Different **B** matrix structures

- SLV+SI IOS → assimilation of T^{2m}, I
- SMOS B-fix \rightarrow assimilation of only SMOS T_B with B static
- SMOS PDI \rightarrow pseudo direct-insertion of SMOS T_B. SEKF filters still apply to increments and departures • SMOS 2R \rightarrow assimilation of only SMOS T_B, doubling the observation error (2R),
- **SMOS B-prop** \rightarrow assimilation of only SMOS T_B with **B** propagated between two cycles. Background error grows along the assimilation window. Model error was set to 0.01 m³m⁻³,
- SMOS B-text \rightarrow assimilation of only SMOS T_B; background error is defined as a proportion of the water holding capacity (WHC). For a medium texture soil, 10% of WHC is equivalent to doubling background error (0.02 m³m⁻³), or 20 mm for the 1st meter of soil.

•SMOS-3DB \rightarrow an 3D structure background error is assumed. The model top layer is more affected by short term variability and more sensitive to precipitation errors \rightarrow 20% of WHC for top layer (~ 0.04 m³m⁻³ for mediumtype soil), 10% of WHC for 2nd layer and 5% of WHC for 3rd more stable layer.

Validation and verification

- Validation against in-situ soil moisture data from two independent networks: SCAN and USCRN
- Comparison against 2 m temp and 2 m dew point temp observations from the SYNOP network
- Atmospheric verification using a North-America mask

http://ismn.geo.tuwien.ac.at/ismn/

Validation against in-situ data

USCRN	Bias (m³m ⁻ ³)	RMSD (m³m⁻ ³)	R	Ν		SCAN	Bias (m³m⁻ ³)	RMSD (m³m⁻ ³)	R	Ν
OL	-0.115	0.130	0.7 5	60		OL	-0.062	0.104	0.7 4	86
SLV	-0.115	0.130	0.7 5	60		SLV	-0.061	0.104	0.7 4	86
SMOS+S LV	-0.097	0.121	0.7 6	60		SMOS+S LV	-0.048 Only stations v	0.101	0.7 5 elation v	86 values
SMOS	-0.089	0.115	0.6 7	60	- OL - SI	SMOS	Co rtij@35 e 95	% (p-va ju¢G 10.05)	0.6 8	86

____ SMOS + SLV

SMOS

ECMWF EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Validation against in-situ data

USCRN	Bias (m³m ⁻ ³)	RMSD (m³m⁻ ³)	R	N	SCAN	Bias (m³m ⁻ ³)	RMSD (m³m ⁻ ³)	R	Ν
Direct Ins	-0.099	0.116	0.7 1	58	Direct Ins	-0.051	0.106	0.6 8	83
SMOS + R	-0.086	0.113	0.6 9	58	SMOS + R	-0.032	0.101	0.6 9	83
SMOS+2 R	-0.096 — SMOS PDI	0.117	0.7 4	58	SMOS+2 R	Onl jostatio ns v Confidence 955	vith sig 0if(@# t corre % (p-value < 0.05)	ela ()o7 n v 2	alu 83

SMOS R

SMOS 2R

 \rightarrow Good impact of SMOS+2R in the root-zone (R)

Validation against in-situ data

USCRN	Bias (m³m ⁻ ³)	RMSD (m³m⁻ ³)	R	Ν	
SMOS B- fix	-0.085	0.109	0.7 0	64	S
SMOS B- prop	-0.088	0.111	0.6 9	64	S
SMOS Btext	-0.074	0.104	0.6 7	64	
SMOS + 3DB	-0.071	0.102	0.6 5	64	S

SCAN	Bias (m³m⁻ ³)	RMSD (m³m ⁻ ³)	R	Ν
SMOS B- fix	-0.022	0.095	0.7 0	77
SMOS B- prop	-0.025	0.095	0.7 0	77
SMOS Btext	-0.015	0.094	0.6 6	77
SMOS + 3DB	-0.016	0.094	0.6 4	77

Only stations with significant correlation values Confidence 95% (p-value < 0.05)

→ Low impact in the root-zone

Temperature

Conclusions (I)

- SMOS data successfully integrated into a coupled land-atmospheric model,
- First seasonal experiments show that, compared to the operational system, the SMOS signal tend to dry the soil
 - \rightarrow positive results in terms of shallow and root-zone soil moisture,
 - \rightarrow Possible compensation mechanism in the atmosphere,
- Several diagnostics show that several components of the assimilation system should be adjusted to optimize the use of SMOS information in the land DA system,
- Sensitivity experiments:
 - ➤ G-I: Type of observation:
 - Constraining soil moisture through observations is important,
 - Soil moisture analyses benefit of assimilating SMOS data,
 - But main improvement of atmospheric variables produced by SLV (improvement up to 20% and 1-week)
 - Compensation mechanisms in coupled system

Conclusions (II)

- ➢ G-II: Weight of SMOS observation:
 - Given total confidence to observations produces spurious increments,
 - Doubling SMOS observation error does not reduce RMSD for top layer, but improves the correlation and slightly the atmospheric scores → fair increase of the observation error
- ➢ G-III: B-matrix error structures:
 - Introducing soil texture information in the background error is beneficial for soil moisture,
 - Atmospheric scores are neutral

 \rightarrow Doubling SMOS observation error and introducing soil texture information in the background error, in combination with SLV, could improve land and atmospheric scores,

19

 \rightarrow We are still learning!

Understanding the carbon and water cycles using SMOS data and models, Toulouse, France 13-14 November 2014

Thanks for your attention !

contact: joaquin.munoz@ecmwf.int

Further information:

SMOS online monitoring in NRT: <u>http://www.ecmwf.int/products/forecasts/d/charts/monitoring/satellite/smos/</u>

ECMWF SMOS website: http://www.ecmwf.int/research/ESA_projects/SMOS/index.html

ECMWF CMEM website:

http://www.ecmwf.int/research/data_assimilation/land_surface/cmem/cmem_index.html

Questions

> How is possible that sm is barely affected by assimilating SLV observations, and however it has a great impact in the atmosphere compared to the OL?

> XXX (locally changes and degradations ??)

> Why when SMOS data is assimilated, the bias against in-situ is greatly reduced, but why not the RMSE?

≻ XXX

> Should we use anomaly correlation as alternative metric?

>Yes, I think we shouldn't to complement the metric observed here and to quantify the skill of SMOS data to predict short-scale variability.

> Why have you used the operational analysis as reference and not the own analysis?

> Because the oper offers the best possible analysis as reference. In our case upper-air observing system is reduced as I wanted faster experiments, and the quality of the analysis are likely to be not as good as those of the oper.

> Why B-prop doesn't add any improvement?

> Because the B matrix is not cycled but propagated during 12 h and reinitialized at the next cycle. The benefits of propagating the B-matrix are over a time scale of 3 and 9 hours, as the analysis are at 00 and 06 UTC. For these scales and the error given to Q, errors do not grow much and little impact is observed,