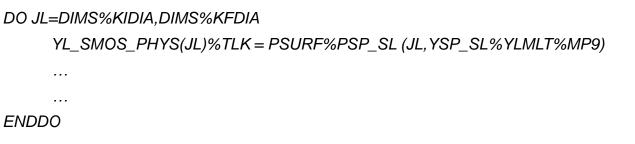
SMOS PM meeting 21-04-15

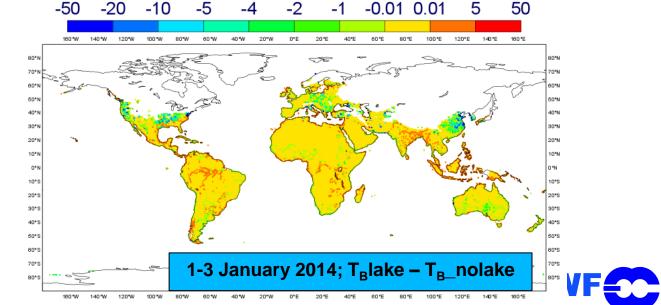
- > Operational work for CY41R2
- Data assimilation experiments
- Progress on the T_B processor for the Neural Network

Operational work for CY41R2 - Summary

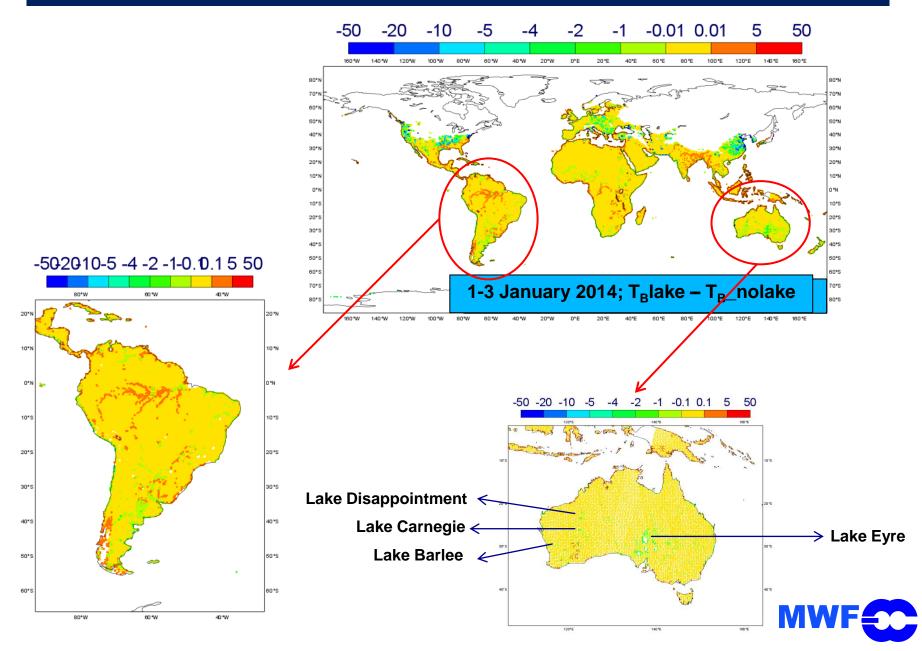
☑ Scientific contribution:

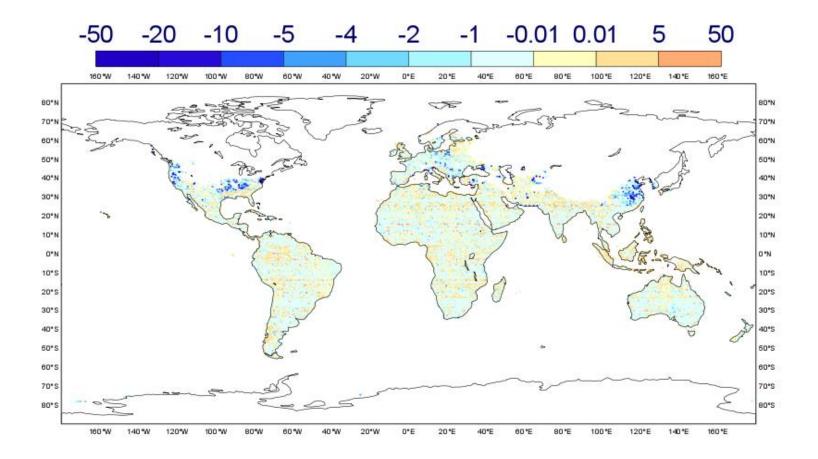

- Introduced mixed-layer lake temperature in the SMOS observation operator,
- Created structure to introduce a 3D background error in the soil moisture analysis as a function of soil texture and soil depth,
- Different incidence angles for operational monitoring and assimilation allowed with ODB interface,
 - Optional arguments in general GETDB group of functions introduced,
 - SQL queries for SMOS rewritten compatible with new arguments
- Feedback to ODB to monitor "bias corrected first-guess",

Technical contribution

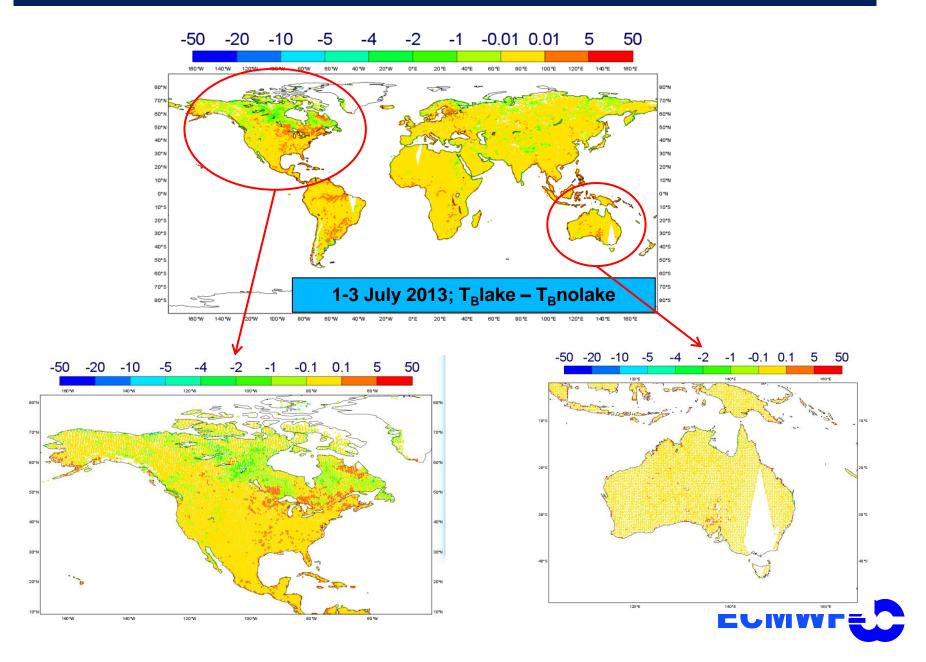

- New structure to use SMOS data assimilation in operations, compatible with structure and time operational constraints.
 - New python definition file with new presatsekf task
 - New 'SMOS' python class in dictionary of computing resources

+ code maintenance and bug-fixing !!

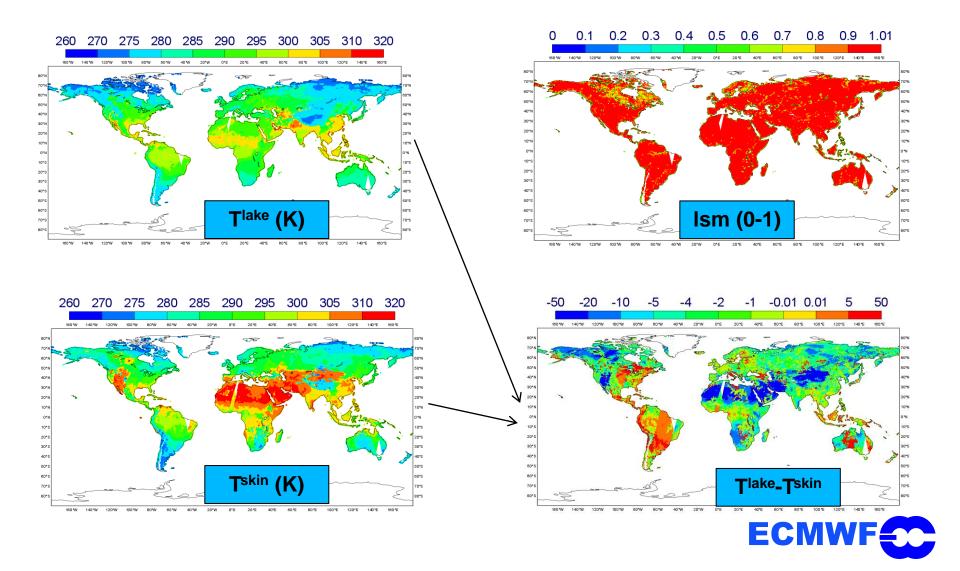

 Introduction of mixed-layer lake temperature, iced lake temperature and lake ice depth variables in SMOS structure in IFS and in the observations operator:

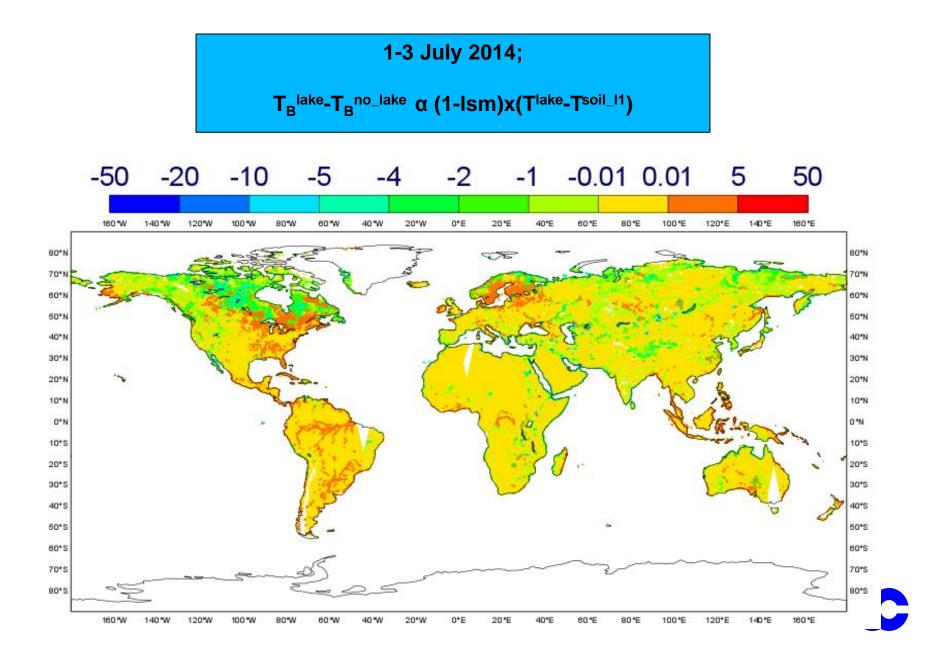

- → For water tile, effective temperature is mixed-layer lake temperature instead of skin temperature,
- → If ice_depth > 0, the effective temperature is ice lake temperature instead of skin temperature (*)

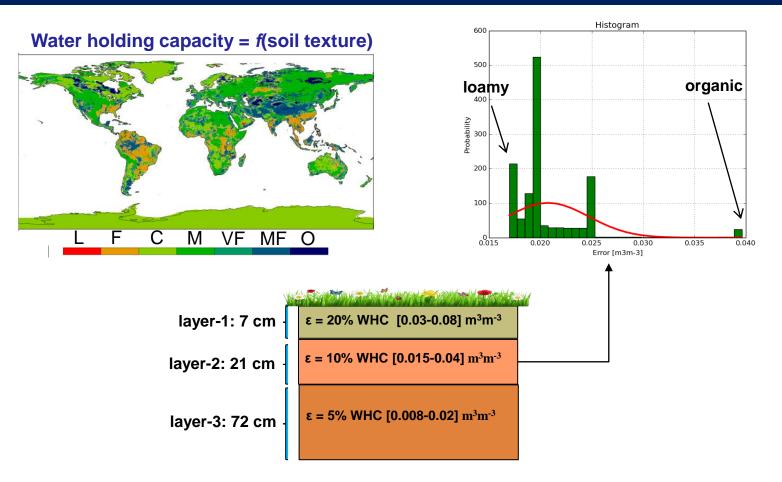
- → 3-days global coverage
- → Only active observations (no CDF matching and SEKF filters yet!)



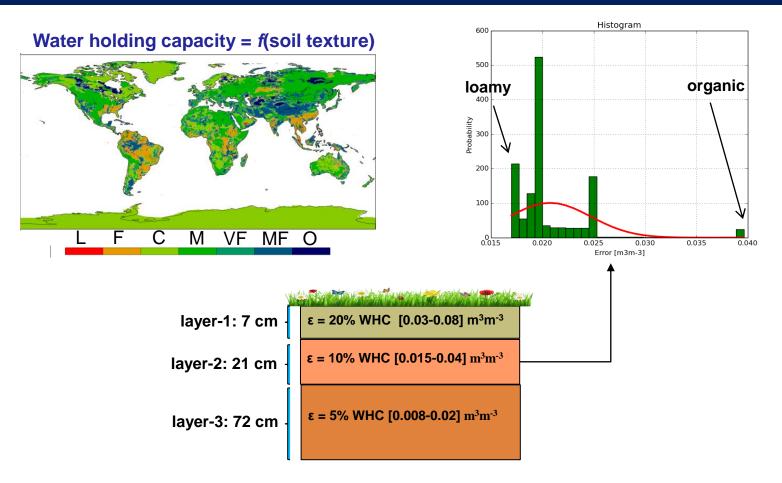
1-3 January 2014; $(T_B lake - T_B nolake)_{XX} - (T_B lake - T_B nolake)_{YY}$




→ Difference lake/no_lake is stronger in YY polarisation

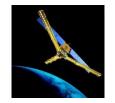


Validation: $T_B^{lake}-T_B^{no_lake} \alpha$ (1-lsm)x($T^{lake}-T^{skin}$)



3D-error structure for sm background error & obs errors

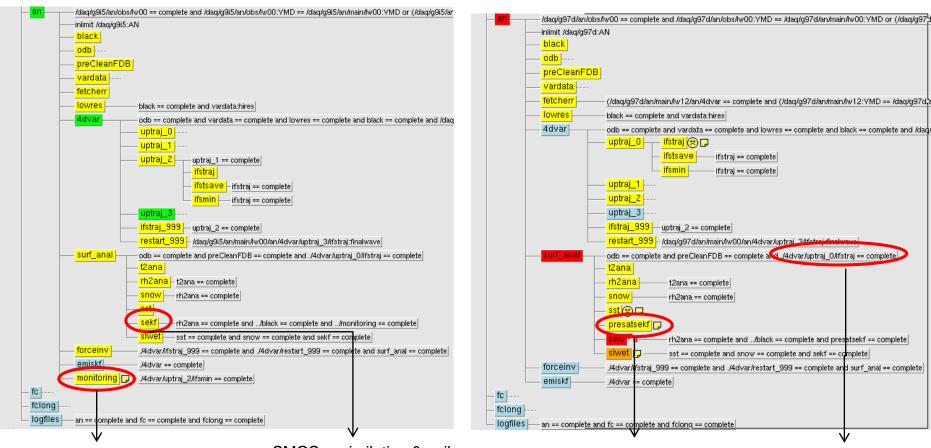
3D-error structure for sm background error & obs errors



Conventional data

$$\sigma(T_{2M}) = 1 \text{ K}; \sigma(RH_{2M}) = 4\%;$$

 $\sigma(SM) = 0.05 \text{ m}^3\text{m}^{-3}$



 $\sigma(T_B) = 6 + p \cdot x \cdot rad_acc$

Operational assimilation; technical implementation

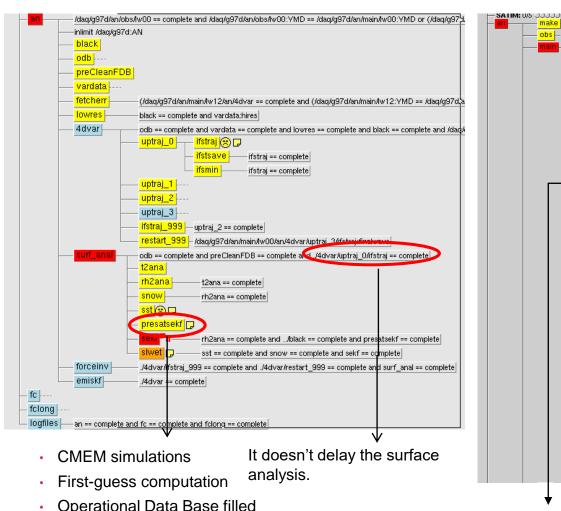
Research configuration

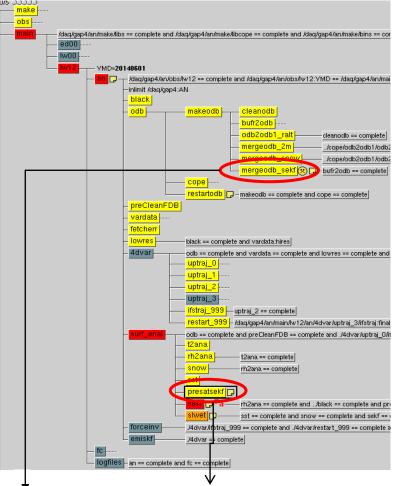
- CMEM simulations
- First-guess computation
- Observational Data Base filled

SMOS assimilation & soil moisture analysis → Need to wait for the CMEM simulations

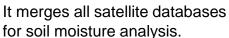
- CMEM simulations
- It doesn't delay the surface analysis.
- First-guess computation
- Observational Data Base filled

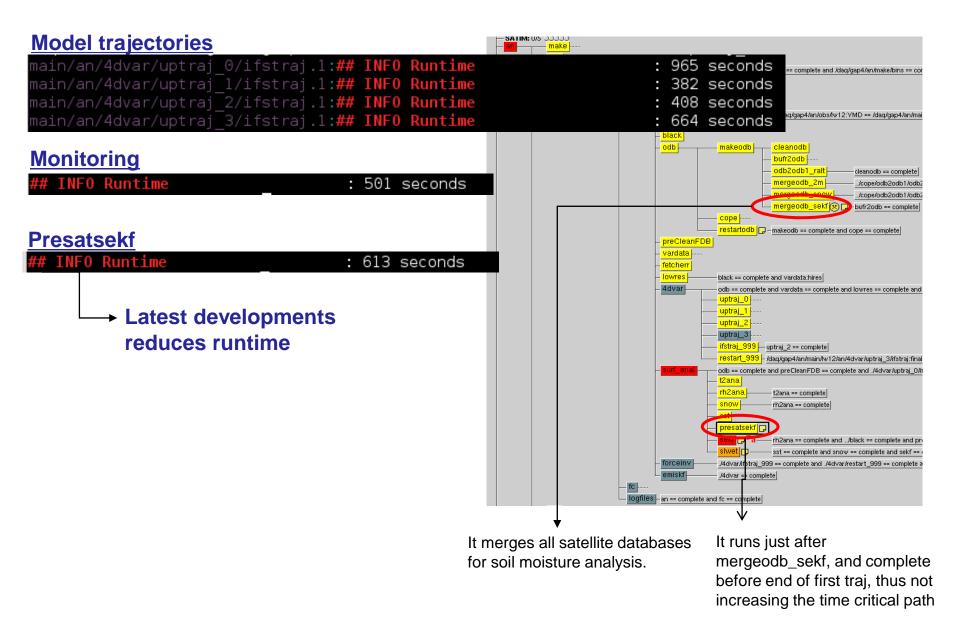
Monitoring (active)




Monitoring (passive data)

Operational assimilation; technical implementation


Operational configuration (first version)



Operational Data Base filled

It runs just after mergeodb_sekf, and complete before end of first traj, thus not increasing the time critical path

Monitoring (active)

Technical points of the implementation

Monitoring configuration	(New) Assimilation configuration				
fg computed in monitoring task	fg computed in presatsekf task				
\$WDIR = 'an'	\$WDIR = 'surf_anal'				
 Produces \$WDIR/monitor/ merged ECMA for monitoring is created here ODB environment variables and \$dbdir are set up here 	 No new directory is created because No mergeodb is necessary as it is previously done for the sekf. However, \$dbdir, ODB env variables and \$FSFAMILY need to be changed to read the right ECMA in the right place. 				
No feedback to ODB for bias correction	Feedback to ODB for bias corr is done in SEKF				
	 Crash if running at the same time that ifsmin It can be safely run after uptraj_2/ifsmin but it will delay the last trajectory. New vardir_presatsekf created to run ifstraj where the simplified first traj should be run and doesn't clash with ifstraj and ifsmin of 4dvar. 				
SMOS is safely removed from big ODB through a sms variable	New sms variable has to be created that removes SMOS from big ODB, as it is not part of upper-air analysis				
The switch LMONITORING controls the monitoring configuration at script level	The switch LPRESATSEKF controls the presatsekf config for assimilation				
Both are compatible and can be run at the same time \rightarrow future passive monitoring data					

Technical points of the implementation

- ☑ The key to merge several individual ODB via ifstraj_0 and to compute the closest observations to the model grid is to set the variable ODB_MERGEODB_DIRECT=1 → CALL getenv('ODB_MERGEODB_DIRECT', clenv), which then set ienv=1, then allows a call to SHUFFLE_ODB, and finally to grid_nearest via UPDATE_OBSD. The variable LDTRANSFORM=.TRUE. does the conversion from degrees to radians.
- ✓ So, how and where to set ODB_MERGEODB_DIRECT=1?→ All is set in the ifsvar script, in the first trajectory. This script is general for many tasks, so one has to be careful how to set it up and under which circumstances.
- Another important variable set in ifsvar is **ODB_CCMA_CREATE_DIRECT**. If set to zero means that one is not working with the CCMA, as in the SMOS case because is not part of the upper-air atmospheric analysis.

TASK	ODB_MERGEODB_ DIRECT before ifstraj	mergeodb	ODB_CCMA_ CREATE_DIRECT	mergeodb_done_ ECMA
IFSTRAJ_0	1	Yes, big ECMA	-	Produced after ifstraj_0 in \$WDIR
MONITORING	1	Yes, only SMOS (in the future other passive data too)	0	Produced after ifstraj_0 call, in \$WDIR/monitor
PRESATSEKF (1)	1	No need, already done in mergeodb_sekf	0	Produced after ifstraj_0 in \$WDIR

NOTE: To run presatsekf and process SMOS observations, mergeodb_done_ECMA must not exist in \$WDIR/an, otherwise ODB_MERGEODB_DIRECT will be set to 0! After ifstraj_0, mergeodb_done_ECMA is created, but then the trick is to search for mergeodb_done_ECMA in \$WDIR/sekf/, which is not created yet, so ODB_MERGEODB_DIRECT still 1. Even if ODB_MERGEODB_DIRECT=0, then presatsekf will run but without SMOS processing. If it is re-run again, then it will work, because bufr2odb_smos is rerun too, and this removes the mergeodb_done_ECMA file in \$WDIR.

Technical issues

- SMOS data was not fetched for the Early Delivery stream and thus it would not influence directly the medium-range forecast.
- ✓ Very difficult bug in ASCAT code detected, which prevented joint assimilation of ASCAT and SMOS → it happened only under very particular circumstances
- ☑ Last model trajectory (after presatsekf) produced unrealistic values in the Jo table for all SCATT group data.
- Experiment in 2012 cannot be initialized from operational using 41R1 branch (only the EDA). Start them from e-suite 0058. Then, on 20120620 it has to be turned to operations (0001).
- ✓ Verify database is built up since cy41r1 in parallel. If verify for 00 and 12 UTC run at the same time, crash columns and the experiment failed --> Solved at script level,
- ✓ The new technical structure reopened the merged database for sekf, which caused break of link between header and body tables in ODB for ECMA.scatt,
- Second version of operational structure tested and working. However, there is not bit-identical to a control assimilation experiment.
- Problems found in CY41R1 when trying to run with only satellite data.
- Recent ODB bug found in the e-suite, which makes the 'monitoring' job to fail.
- The IFS code is becoming very complex. SMOS structure does not follow the usual path of other satellites and constant maintenance is needed. However, current projects (OOPS, COPE) will make life easier in the future.
- D CRAY traceback (in my opinion) is less informative than IBM.

. . . .

SMOS PM meeting 21-04-15

- > Operational work for CY41R2
- > Data assimilation experiments
- Progress on the T_B processor for the Neural Network

Fine-tunning experiments - Summary

✓ Assimilation of SLV and SMOS T_B alone or in combination → Several background and observation error configurations were tested:

- Background error B:
 - ☑ Propagated within two assimilation cycles,
 - ☑ Depending on the soil texture,
 - ☑ Depending on the depth of the soil layer and soil texture.
- ☑ Observation error for SMOS TB:
 - ☑ Direct insertion approach,
 - ☑ Doubling the observation error (radiometric accuracy)

☑ Main conclusions:

- ☑ 1- Compared to an open-loop, analysing soil moisture is very beneficial for atmospheric scores
- ☑ 2- The assimilation of SMOS data had a positive impact on soil moisture averaged over all the US in-situ stations. However screen-level variables added very little.
- ☑ 3- Introducing soil texture information in the background error and doubling the SMOS observations error, decreased the bias and increased the correlation coefficient with in-situ data, respectively.

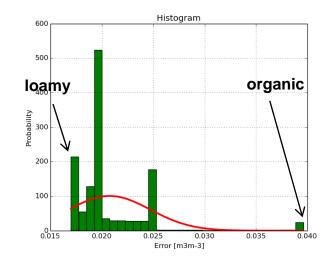
Fine-tunning expts for operational configuration

- ✓ To fine-tune the use of SMOS data in the assimilation system, the previous conclusions led to the following new experiments:
 - Assimilation of SMOS data doubling observation error and **B** matrix depending on soil texture and depth,
 - ✓ As the previous experiment but halving the first-guess check,
 - Assimilation of SMOS data doubling observation error and **B** matrix depending only on soil texture,

Main conclusions:

- Combining a 3D structure with soil texture information in the **B** matrix and doubling the error of SMOS observations is the most beneficial for both the unbiased RMSD and the correlation coefficient.
- \blacksquare The fg_check of 10 K can be very restrictive, especially in areas with strong variability of T_B. Therefore, if a single value has to be used, better to leave it as it is now, i.e., 20 K. fg_check plays important role in surface scores, therefore recommended to implement a variable fg_check as a function of the location.
- ✓ 1.5 months (instead of 1-month) expts (15 Sept 31 Oct 2012) → validation data available!
- Configuration as in operational. What are the main changes compared to the previous expts? $\mathbf{\nabla}$
 - Resolution: TL639, and global scale, ٠
 - Cycle 41r1 (previous in 40r1), •
 - ASCAT assimilation turned on. •
 - $\sigma(T^{2m}) = 1 \text{ K} (2 \text{ K}), \sigma(RH^{2m}) = 4\% (10\%),$
 - Surface lake temperature introduced,
 - 3D-structure for background error introduced (also in previous expts),
- What is yet missing? $\mathbf{\nabla}$
 - New version 6.20 \rightarrow improved use of flags for RFI detection,

ЕСМИ


New CDF matching coefficients

Fine-tunning expts for operational config

Water holding capacity = f(soil texture)

☑ Experiments:

<u>CTRL: SLV + ASCAT</u>: $\sigma(T_{2M})=1$ K; $\sigma(RH_{2M})=4\%$; $\sigma(SM_{ASCAT})=0.05$ m³m⁻³

SLV + SMOS R1-B1 + ASCAT

ε = 20% WHC [0.03-0.08] m ³ m ⁻³
ε = 10% WHC [0.015-0.04] m ³ m ⁻³
ε = 5% WHC [0.008-0.02] m ³ m ⁻³

SLV + SMOS R1-B2 + ASCAT

V		
	$\epsilon = 10\%$ WHC [0.015-0.04] m ³ m ⁻³	$\epsilon = 10\%$ WHC [0.015-0.04] m ³ m
	ε = 5% WHC [0.008-0.02] m ³ m ⁻³	ε = 5% WHC [0.008-0.02] m ³ m ⁻¹
	ε = 5% WHC [0.008-0.02] m ³ m ⁻³	ε = 5% WHC [0.008-0.02] m ³ m ⁻³

 $\sigma(T_B) = 6 + rad_acc \sim [8.5-10] K$

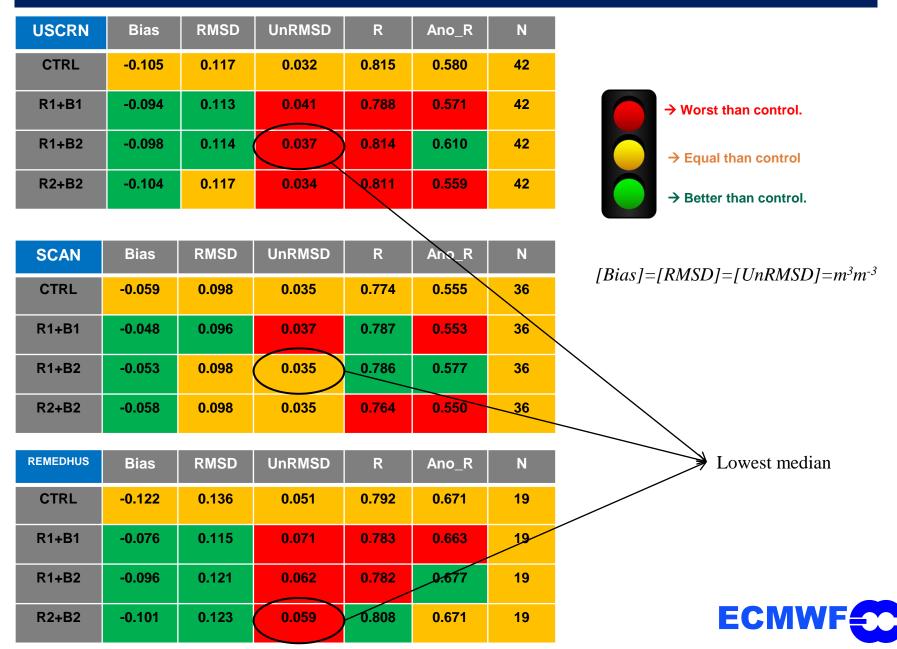
σ(T_B)= 6 + rad_acc ~ [8.5-10] K

 $\sigma(T_B) = 6 + 3xrad_acc \sim [13.5-18] K$

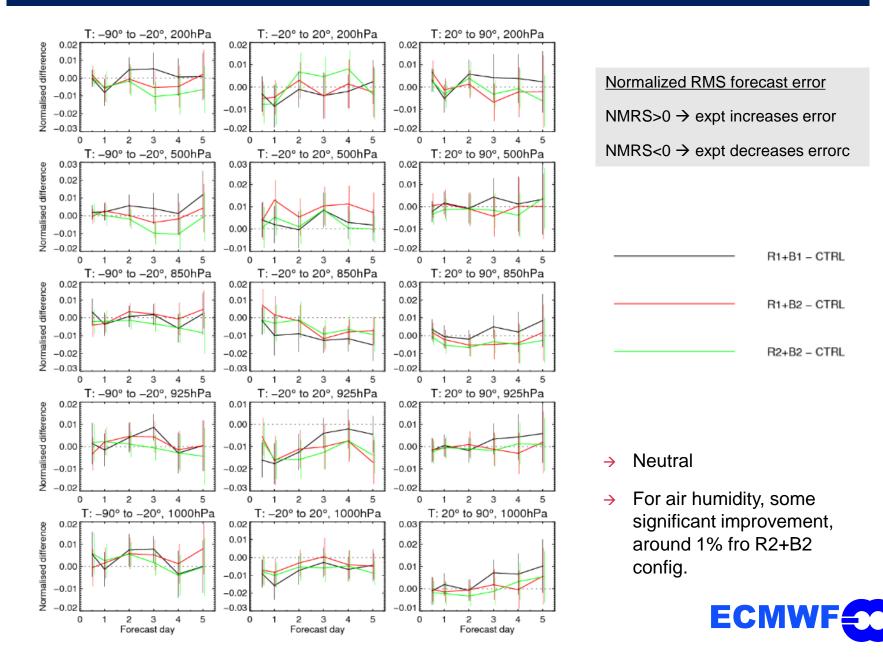
SLV + SMOS R2-B2 + ASCAT

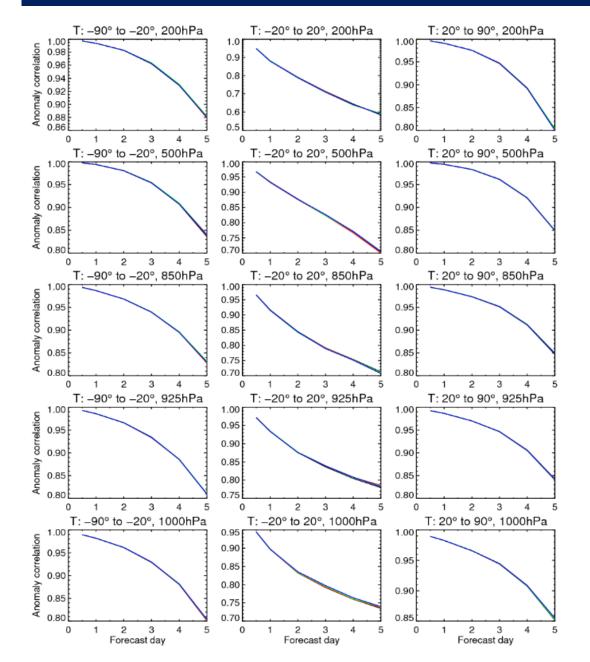
Soil moisture validation

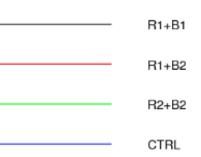
Soil moisture analyses and forecasts are validated against in-situ data ("truth")



SCAN & USCRN


The forecast skill of atmospheric variables is compared against a control experiment (using own analyses as reference),

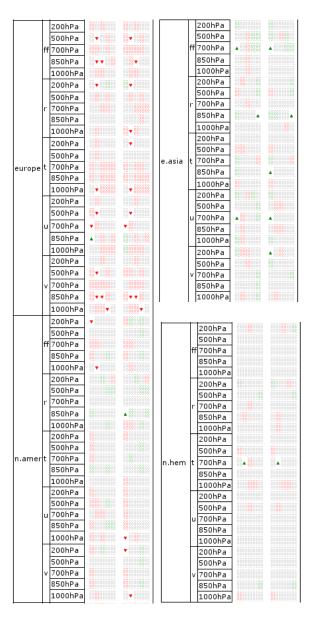

Soil moisture validation



Forecast scores air temperature - RMSE

Forecast scores air temperature – Anom Correlation

- Neutral
- → R2+B2 obtains some significant small improvements for vector wind speed and geopotential variables



Forecast scores – North Hemisphere

SLV + ASCAT + SMOS R1-B1

SLV + ASCAT + SMOS R1-B2

SLV + ASCAT + SMOS R2-B2

200hPa - - 200hPa - 1000hPa - 1000hPa - 1000hPa - 1000hPa 100
1000hPa ************************************
europet 800hPa 1000hPa 1000hPa <td< td=""></td<>
europet 850hPa 1000hPa 1000hPa <td< td=""></td<>
1000hPa 1000hPa 1000hPa 1000hPa 200hPa 1000hPa 200hPa 200hPa 200hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 200hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa
200hPa 200hPa<
sooha r sooha r <t< td=""></t<>
r 700hPa r 700hPa r 700hPa gS0hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 200hPa 200hPa 200hPa 200hPa 200hPa 1000hPa 200hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa <t< td=""></t<>
BS0hPa BS0hPa BS0hPa BS0hPa BS0hPa 1000hPa 200hPa 200hPa 200hPa 200hPa 200hPa S00hPa V BS0hPa 200hPa 200hPa 200hPa 200hPa BS0hPa V BS0hPa I 000hPa S00hPa I 000hPa S00hPa I 000hPa
B30hPa 1000hPa 1000hPa 1000hPa 200hPa 200hPa 200hPa 200hPa 200hPa 200hPa 200hPa 500hPa - - 200hPa - 200hPa 200hPa 500hPa - - - 200hPa - - 200hPa 1000hPa - - - - - - - - 200hPa 1000hPa -
1000hPa 200hPa 200hPa 200hPa 200hPa 200hPa 1000hPa 1000hPa 1000hPa 200hPa 200hPa 200hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 200hPa 1000hPa 200hPa 200hPa 1000hPa 1000hPa 1000hPa 1000hPa 200hPa 1000hPa
europe t 200hPa soohPa soohP
s00hPa
europe t 700hPa 850hPa 850hPa 200hPa 200hPa 200hPa 200hPa 850hPa 1000hPa 200hPa 200hPa
850hPa 1000hPa 1000hPa 1000hPa 1000hPa 200hPa 1000hPa 200hPa 1000hPa 200hPa 200hPa 1000hPa 1000hPa 1000hPa 1000hPa 200hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 200hPa 200hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 200hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa
1000hPa 200hPa 200hPa 200hPa 200hPa 200hPa 200hPa 200hPa 000hPa 000hPa 200hPa 200hPa 000hPa 000hPa 200hPa 200hPa 200hPa 000hPa 200hPa 200hPa 200hPa 000hPa 200hPa 200hPa 200hPa 1000hPa 200hPa 200hPa 200hPa 200hPa 200hPa 200hPa 200hPa 200hPa 200hPa 200hPa 200hPa 200hPa 200hPa 200hPa 200hPa 1000hPa 200hPa 200hPa 200hPa 1000hPa 200hPa 200hPa 1000hPa 1000hPa 1000hPa 200hPa 1000hPa 1000hPa 1000hPa 200hPa 1000hPa 200hPa 1000hPa 200hPa 1000hPa 200hPa 1000hPa 200hPa 1000hPa 200hPa 1000hPa 200hPa 1000hPa 200hPa 1000hPa 200hPa 1000hPa 1000hPa 1000hPa 10
200hPa 200hPa 200hPa 200hPa 200hPa 300hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 200hPa 1000hPa 1000hPa 1000hPa 1000hPa 200hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa
soohPa v 700hPa v 700hPa v 700hPa soohPa
u 700hPa v 700hPa x <td< td=""></td<>
850hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 200hPa
1000hPa 200hPa 1000hPa 200hPa 200hPa 500hPa 500hPa 200hPa 500hPa 700hPa 850hPa 200hPa 850hPa 700hPa 850hPa 700hPa 850hPa 1000hPa 1000hPa 850hPa 200hPa 200hPa 1000hPa 200hPa 1000hPa 1000hPa 200hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 200hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 200hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa <
200hPa 200hPa 200hPa 200hPa 500hPa 1000hPa 850hPa 1000hPa 850hPa 200hPa 1000hPa 850hPa 1000hPa 200hPa 200hPa 850hPa 200hPa 200hPa 1000hPa 1000hPa 200hPa 200hPa 200hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 200hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 200hPa 200hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa 200hPa 1000hPa 1000hPa 1000hPa 1000hPa 1000hPa
x S00hPa x 700hPa x 700hPa 850hPa x 700hPa s50hPa x 1000hPa 850hPa 850hPa 1000hPa x 1000hPa 1000hPa 1000hPa 200hPa x x x 200hPa x S00hPa x x x x x 1000hPa x x x x x 200hPa x x x x x 1000hPa x x x x x <t< td=""></t<>
v 700hPa 850hPa 850hPa 850hPa 1000hPa 1000hPa 1000hPa 1000hPa 200hPa 500hPa 200hPa 200hPa 500hPa 500hPa 500hPa 500hPa 1000hPa 850hPa 1000hPa 200hPa 500hPa 500hPa 1000hPa 850hPa 1000hPa 1000hPa 1000hPa 850hPa 1000hPa 1000hPa 850hPa 1000hPa 1000hPa 1000hPa 200hPa 500hPa 1000hPa 1000hPa 850hPa 1000hPa 200hPa 850hPa 200hPa 1000hPa 1000hPa 200hPa 1000hPa 850hPa 1000hPa 1000hPa 1000hPa 1000hPa
850hPa 1000hPa 850hPa 1000hPa 1000hPa 200hPa 1000hPa 1000hPa 200hPa 200hPa 200hPa 200hPa 500hPa 500hPa 500hPa 500hPa 1000hPa 500hPa 500hPa 500hPa 1000hPa 500hPa 500hPa 500hPa 1000hPa 500hPa 500hPa 500hPa 1000hPa 500hPa 500hPa 500hPa 200hPa 500hPa 500hPa 500hPa 1000hPa 500hPa 500hPa 500hPa 1000hPa 500hPa 500hPa 500hPa 1000hPa 500hPa 500hPa 500hPa 1000hPa 500hPa 500hPa 700hPa 850hPa 500hPa 700hPa 500hPa 1000hPa 500hPa 700hPa 500hPa 1000hPa 1000hPa 500hPa 500hPa
1000hPa 1000hPa 200hPa 200hPa 500hPa 200hPa 67 700hPa 500hPa 850hPa 500hPa 1000hPa 500hPa </td
200hPa 200hPa 200hPa 200hPa 200hPa 500hPa 500hPa 500hPa 500hPa 500hPa 67 700hPa 500hPa 500hPa 67 850hPa 1000hPa 850hPa 850hPa 850hPa 1000hPa 1000hPa 200hPa 850hPa 1000hPa 200hPa 850hPa 1000hPa 1000hPa 850hPa 500hPa 200hPa 850hPa 200hPa 850hPa 700hPa 850hPa 700hPa 850hPa 1000hPa 850hPa 1000hPa 850hPa 700hPa 850hPa 1000hPa 1000hPa 1000hPa 850hPa 700hPa 1000hPa 1000hPa 1000hPa 850hPa 700hPa 1000hPa 1000hPa 1000hPa 850hPa 700hPa 1000hPa 1000hPa 850hPa 700hPa 850hPa 1000hPa 1000hPa 850hPa 700hPa 850hPa 1000hPa 1000hPa 850hPa 700hPa 850hPa 1000hPa 850hPa 1000hPa <
500hPa 200hPa 500hPa 700hPa 500hPa 500hPa<
ff 700hPa 500hPa 500hPa 500hPa 500hPa 500hPa 500hPa 500hPa 500hPa 600hPa
850hPa #700hPa 850hPa 1000hPa 1000hPa 850hPa 1000hPa 1000hPa 200hPa 1000hPa 200hPa 1000hPa 500hPa 200hPa 200hPa 200hPa 7 700hPa 500hPa 500hPa 200hPa 850hPa 1000hPa 500hPa 700hPa 1000hPa 500hPa 500hPa 700hPa 850hPa 700hPa 850hPa 700hPa 1000hPa 1000hPa 850hPa 700hPa 1000hPa 1000hPa 850hPa 700hPa
1000hPa 850hPa 1000hPa 850hPa 200hPa 1000hPa 200hPa 1000hPa 500hPa 200hPa 500hPa 200hPa 7 700hPa 500hPa 500hPa 500hPa 850hPa 7 700hPa 850hPa 7 700hPa 1000hPa 1000hPa 1000hPa 500hPa 1000hPa 500hPa 7 700hPa 500hPa 1000hPa 1000hPa 850hPa 7 700hPa 1000hPa 1000hPa 1000hPa 850hPa
200hPa 1000hPa 200hPa 1000hPa 500hPa 200hPa 500hPa 200hPa r 700hPa 500hPa 500hPa 850hPa r 700hPa 500hPa 1000hPa 500hPa 700hPa 500hPa 1000hPa 1000hPa 500hPa 700hPa 1000hPa 1000hPa 850hPa 1000hPa
200hPa 200hPa 500hPa 200hPa 500hPa 500hPa 700hPa 500hPa 850hPa r 700hPa 850hPa 1000hPa 1000hPa 1000hPa 1000hPa
r 700hPa s00hPa r 700hPa s00hPa 850hPa r 700hPa s50hPa s50hPa r 1000hPa 1000hPa 1000hPa s50hPa s50hPa s50hPa
r r <thr< th=""> <thr> r r</thr></thr<>
850hPa 1000hPa 1000hPa
850hPa 850hPa 850hPa
1000hPa
200hPa 200hPa 200hPa
S00hPa S00hPa S00hPa S00hPa S00hPa
u 700hPa
850hPa A B50hPa B50hPa B50hPa
1000hPa 1000hPa 1000hPa 1000hPa
200hPa 200hPa 200hPa 200hPa 200hPa 200hPa
500hPa 500hPa 500hPa 500hPa
v 700hPa v 700hPa v 700hPa

Forecast scores – South Hemisphere

SLV + ASCAT + SMOS R1-B1

	Т		ccaf	rmsef
	t	200hPa		
		500hPa		
	ff			
	Ľ	850hPa		A
		1000hPa		
	\vdash			
		200hPa		2020 20 20000
		500hPa		
	r	700hPa		
		850hPa	•	
	⊢	1000hPa		
		200hPa		
austnz		500hPa		
	t	700hPa	•	
		850hPa		
	L	1000hPa		
		200hPa		
		500hPa		
	u	700hPa		
		850hPa		
	L	1000hPa		
	v	200hPa		
		500hPa	▲	•
		700hPa		
		850hPa	•	
	l	1000hPa		
1		200hPa		
		500hPa		
	ff			
		850hPa	•	•
	r	1000hPa	•	•
		200hPa		
		500hPa		
		700hPa	•	
		850hPa		
	L	1000hPa		
	F	200hPa		
		500hPa		
s.hem	nem t	700hPa		
		850hPa		
		1000hPa	•	
	F	200hPa		
		500hPa		
	u	700hPa		
	ľ	850hPa		
		1000hPa		
	\vdash	200hPa		
		500hPa		
		500hPa 700bPa		
	v	700hPa	•	.
	v		•	•

SLV + ASCAT + SMOS R1-B2

	Г		ccaf	rmsef
	ſ	200hPa		
		500hPa		
	ff			
	Ľ	850hPa		
		1000hPa		
	\vdash	200hPa		
		500hPa		
	r	700hPa		
		850hPa		
	⊢	1000hPa		
		200hPa		
		500hPa		
austnz	t	700hPa		
		850hPa		
	L	1000hPa		
	u	200hPa		
		500hPa		
		700hPa		
		850hPa		
		1000hPa		
	v	200hPa		
		500hPa		
		700hPa		
	Ľ	850hPa		
		1000hPa		
	Π	200hPa		
	ff	500hPa		
		700hPa		
		850hPa		
		1000hPa		
	Η	200hPa		
	r	500hPa		
		700hPa		
s.hem		850hPa		
		1000hPa		
		200hPa		
		500hPa		
		700hPa		
		850hPa		
	Ц	1000hPa		
		200hPa		
			NE 200 000 000 000 :	100 500 500 500 500 500 1 100 500 500 500 500 500 1
		500hPa		
	u	500hPa 700hPa		
	u	500hPa 700hPa 850hPa		
	u	500hPa 700hPa		
	u	500hPa 700hPa 850hPa		
	u	500hPa 700hPa 850hPa 1000hPa		
	v	500hPa 700hPa 850hPa 1000hPa 200hPa		
	u v	500hPa 700hPa 850hPa 1000hPa 200hPa 500hPa		

SLV + ASCAT + SMOS R2-B2

	V + A		JUA	TU	
		Γ		ccaf	rmsef
		L	200hPa		
			500hPa		
		 ff	700hPa		
		Ľ	850hPa		
			1000hPa	NO 800 000 000 000 :	
		⊢	200hPa		
			500hPa		
		r	700hPa		
		Ľ	850hPa		
			1000hPa		
		⊢	200hPa	200.000.000.000.000.	
		L	500hPa		
	austnz	t	700hPa		
			850hPa		
		⊢	1000hPa		
			200hPa		
			500hPa		
		u	700hPa		
			850hPa		
		┝	1000hPa		
		v	200hPa	•	
			500hPa		
			700hPa		
			850hPa		
			1000hPa		
		_			
		ff	200hPa		
			500hPa		
			700hPa		
			850hPa		
			1000hPa		
		r	200hPa		
			500hPa		
	s.hem		700hPa		
			850hPa		
ı			1000hPa	•	
		t	200hPa		
			500hPa		
			700hPa		
			850hPa		
			1000hPa		
			200hPa		
			500hPa		
		u	700hPa		
			850hPa		
			1000hPa		
		F	200hPa		
			500hPa		
		v	700hPa		
		*	850hPa		
			1000hPa		
		-	Locomea	ar ar at 100 000	

Last set of experiments (SLV – ASCAT – SMOS)

☑ Long experiments status:

✓ Last teleconference decisions:

- Long-term experiments SMOS configuration: SMOS R2-B2
- Period: 2012 (or 2014) and 2013 MJJAS

☑ Configuration:

- These experiments use cycle 41r1 with new SMOS implementations (lake temperature and 3D structure for the soil and new operational structure for SMOS Data Assimilation),
- Period: MJJAS 2012 and 2013, because reprocessed data are available. 2014 reprocessed data were not available at the date of these experiments.
- Global scale experiments,
- New flags for SMOS,
- AF-FOV for SMOS data,
- · Last CDF-matching coefficient parameters used for ASCAT and SMOS,
- Resolution is T511 (closer to SMOS observations and faster),
- Full observational system,
- New observation errors for the conventional data: sigma(T2m)= 1 K, sigma(RH2m)=4%
- ASCAT observation error: sigma(soil_moisture_ASCAT)=0.05 m3/m-3
- SMOS observation error: sigma(TB_SMOS)=6+3*rad_acc.
- Background error: variable as a function of soil texture and depth: sigma(top level)=10% WHC, sigma(2nd_layer)=5% WHC, sigma(3rd_layer)=5% WHC

Last set of experiments (SLV – ASCAT – SMOS)

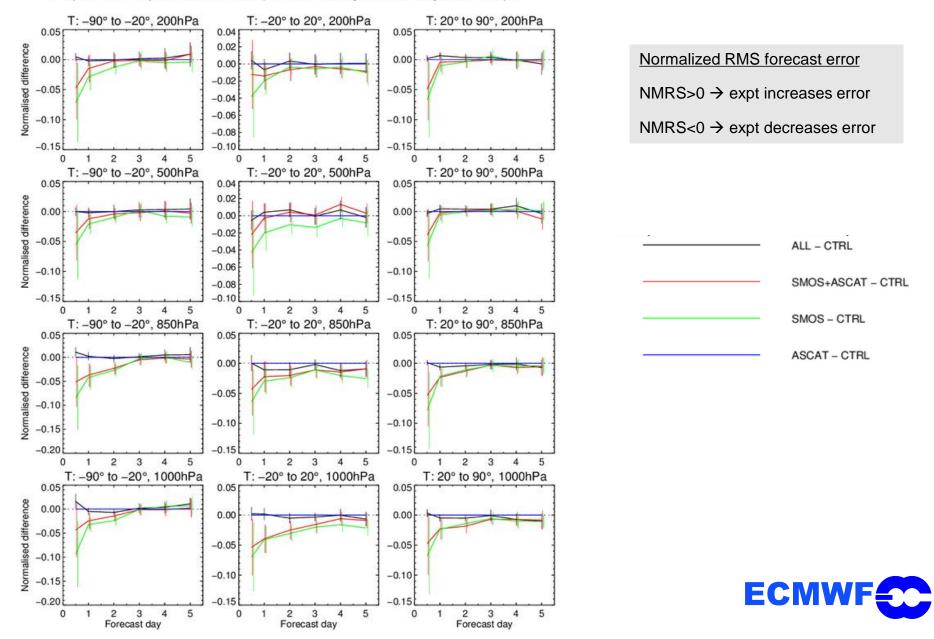
☑ Long experiments status:

☑ Last teleconference decisions:

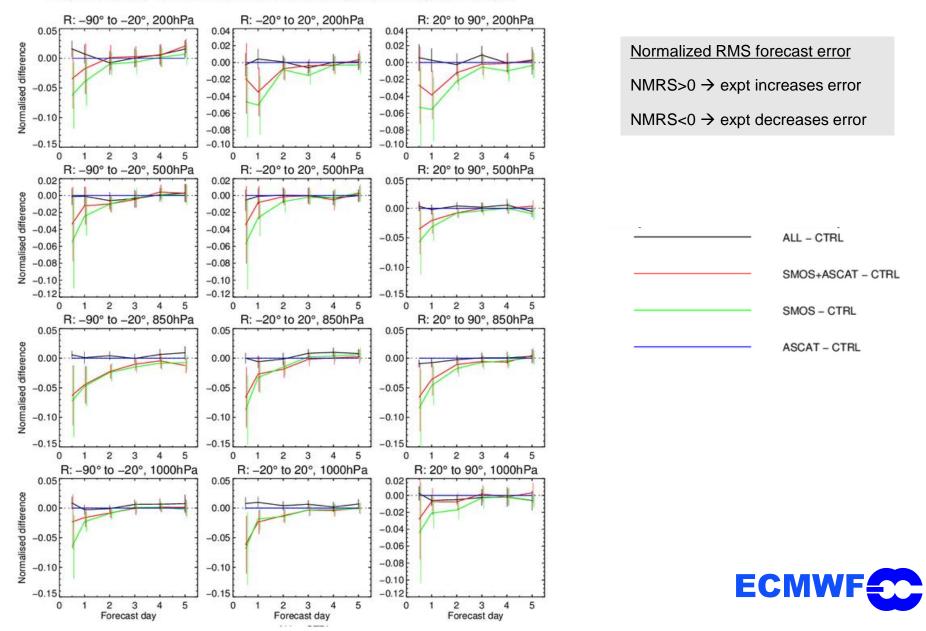
- Long-term experiments SMOS configuration: SMOS R2-B2
- Period: 2012 (or 2014) and 2013 MJJAS

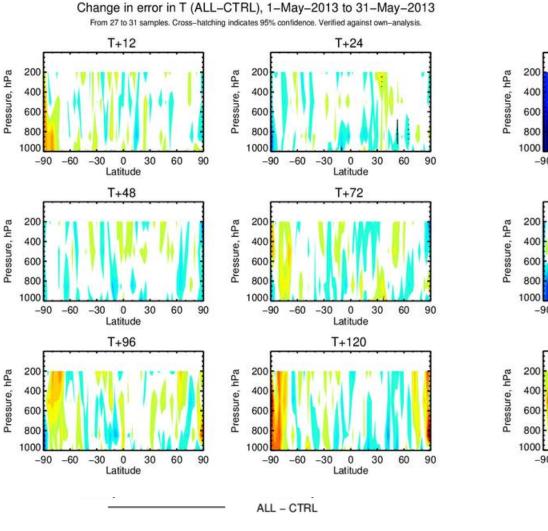
SLV (T ^{2m} , RH ^{2m})	ASCAT SM	SMOS TB	Description
-	-	-	open-loop 2012: open-loop, no soil moisture analysis
4	-	-	CTRL-2012: assimilation of only SLV
-	4	-	ASCAT-2012: assimilation of only ASCAT SM observations
-	-	4	SMOS-2012: assimilation of only SMOS TB observations
-	4	4	ASCAT+SMOS-2012: assimilation of ASCAT SM and SMOS TB observations
4	4	4	SLV+ASCAT+SMOS-2012: assimilation of SLV, ASCAT SM and SMOS TB observations
-	-	-	open-loop 2013: open-loop, no soil moisture analysis
V	-	-	CTRL-2013: assimilation of only SLV
-	4	-	ASCAT-2013: assimilation of only ASCAT SM observations
-	-	4	SMOS-2013: assimilation of only SMOS TB observations
-	4	4	ASCAT+SMOS-2013: assimilation of ASCAT SM and SMOS TB observations
1	4	4	SLV+ASCAT+SMOS-2013: assimilation of SLV, ASCAT SM and SMOS TB observations

Last set of experiments (SLV – ASCAT – SMOS)

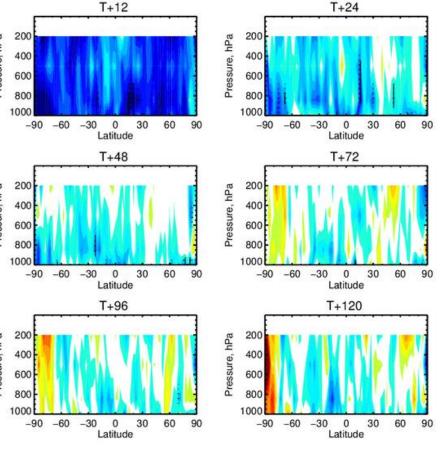

☑ Long experiments status:

☑ Last teleconference decisions:

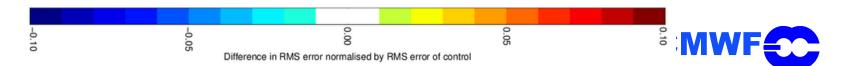

- Long-term experiments SMOS configuration: SMOS R2-B2
- Period: 2012 (or 2014) and 2013 MJJAS


SLV (T ^{2m} , RH ^{2m})	ASCAT SM	SMOS TB	Description
-	-	-	open-loop 2012: open-loop, no soil moisture analysis
1	-	-	CTRL-2012: assimilation of only SLV
-	4	-	ASCAT-2012: assimilation of only ASCAT SM observations
-	-	1	SMOS-2012: assimilation of only SMOS TB observations
-	4	4	ASCAT+SMOS-2012: assimilation of ASCAT SM and SMOS TB observations
1	4	1	SLV+ASCAT+SMOS-2012: assimilation of SLV, ASCAT SM and SMOS TB observations
-	-	-	open-loop 2013: open-loop, no soil moisture analysis
1	-	-	CTRL-2013: assimilation of only SLV
-	1	-	ASCAT-2013: assimilation of only ASCAT SN observations
-	-	1	SMOS-2013: assimilation of only SMOS TB observation
-	4	1	ASCAT+SMOS-2013: assimilation of ASCAT SM and SMOS TB observations
1	4	4	SLV+ASCAT+SMOS-2013: assimilation of SLV, ASCAT SM and SMOS TB observations
			O S A J J N

1-May-2013 to 31-May-2013 from 27 to 31 samples. Confidence range 95%. Verified against own-analysis.



1-May-2013 to 31-May-2013 from 27 to 31 samples. Confidence range 95%. Verified against own-analysis.



Change in error in T (SMOS–CTRL), 1–May–2013 to 31–May–2013 From 27 to 31 samples. Cross–hatching indicates 95% confidence. Verified against own–analysis.

SMOS - CTRL

—	-			
		200hPa		******
		500hPa	▲	A
	ff	700hPa	▲ 333333	▲ 333333
		850hPa	▲	▲ ())))))))
	L	1000hPa	▲ `````````````	A
		200hPa	A A	A A (() () ()
		500hPa	A A	A A 33333
	r.	700hPa	A 3333333	A333333
		850hPa	A A	A
		1000hPa	A A 33333	A333333
	F	200hPa		
		500hPa		
n.hem	t	700hPa		
	[850hPa	A	
		1000hPa		
	⊢	200hPa		******
		500hPa	100000000	A33338
	Ι	700hPa		
	u.		A 3000000	
		850hPa		
	⊢	1000hPa		
	v	200hPa		
		500hPa	A	A
		700hPa	A	A
		850hPa	A	A
	⊢	1000hPa	A	A
		200hPa	A	▲
	ff	500hPa	A	A
		700hPa	A333333	A 333333
		850hPa	A A	A A
	L	1000hPa	A A	A A
	r	200hPa		
		500hPa	▲ ▲```````	A
		700hPa	A	A
s.hem		850hPa	A A	▲ ▲ 💥 🔅
	L	1000hPa	A 333333	4 333383
	t	200hPa	A A	A A
		500hPa	A	A
		700hPa	A	A
		850hPa	A A	A A 33333
		1000hPa	A A	A A 33333
	F	200hPa	A	A
		500hPa	A	A
	u	700hPa	A	
	[850hPa	A	
		1000hPa		A A 33333
	F	200hPa	A 30000	A 300 333
		500hPa	10000000	
		700hPa	A333333	▲300000
	ľ		-000000000	▲ ▲33333
		850hPa		
L		1000hPa	••	▲

	200hPa		
	500hPa	10000000	
ff		10000000	
	850hPa	1000000	
	1000hPa		
	200hPa		
	500hPa		
r	700hPa		
	850hPa		
	1000hPa		
	200hPa	•	800000
	500hPa		
n.hem t	700hPa		
	850hPa	A A	▲▲ ```````
	1000hPa		
	200hPa		
	500hPa	1000000	
u			
	850hPa		
	1000hPa		····
	200hPa	******	
	500hPa		
v	700hPa		
	850hPa		
	1000hPa		
	200hPa		
	500hPa		
ff	700hPa		
	850hPa		10000000
	1000hPa		10000000
	200hPa		
	500hPa		
r	700hPa		
	850hPa		
	1000hPa		
	200hPa		
	500hPa		
s.hem t	700hPa		888 * 888
	850hPa		
	1000hPa		
	200hPa		
	500hPa		
u	700hPa		
	850hPa		
	1000hPa		
			100000000000
	200hPa		20030000
v	200hPa		
v	200hPa 500hPa		

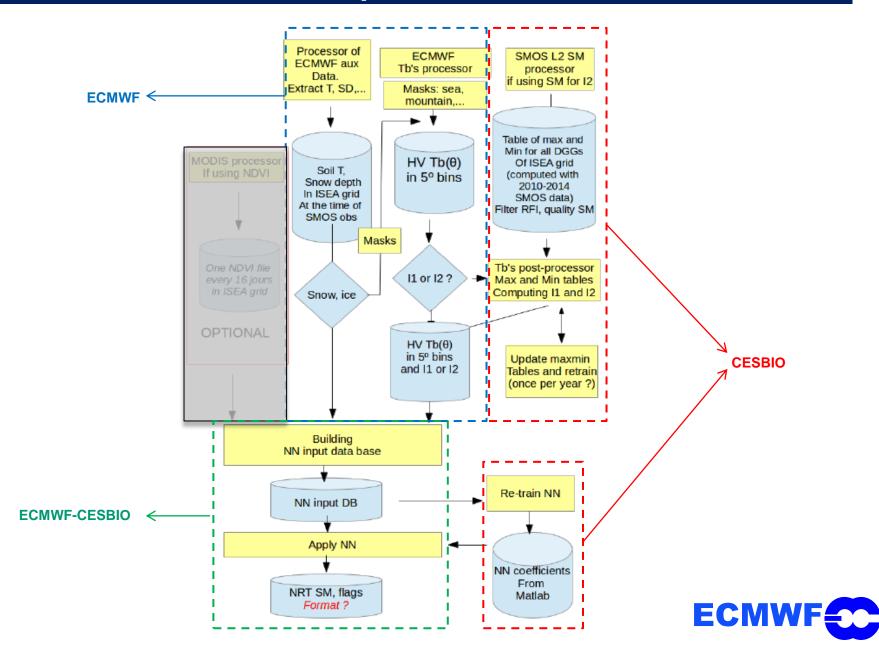
ALL - CTRL

SMOS PM meeting 21-04-15

- > Operational work for CY41R2
- Data assimilation experiments
- Progress on the T_B processor for the Neural Network

SM NRT with Neural Network

☑ Data from the 2nd reprocessing will be used to train the NN (better quality and better RFI flagging) →


- Big volume of data (~15 Tby!),
- Downloading on-going

- Reprocessing by operations is not needed!
- ☑ Specifications of the NRT SM NN:
 - Trade-off quality_product-swath_width → conservative approach is 3 angles and 2 polarisations → retrieval swath is 914 km,
 - Full swath retrieval still possible 1174 km at reasonable quality
 - One incidence angle and local normalization
 - Potential poor temporal correlations with L3SM at high latitudes
 - NDVI increases complexity of the processor and if *I*2 is used, then no better performance,
 - MODIS NDVI MYI13C1 not in ECMWF archives
 - Development of acquisition stream and pre-processor
 - But NDVI important if less than 3 incidence angles.
 - Soil temperature included,

NRT processor

SM NRT with Neural Network

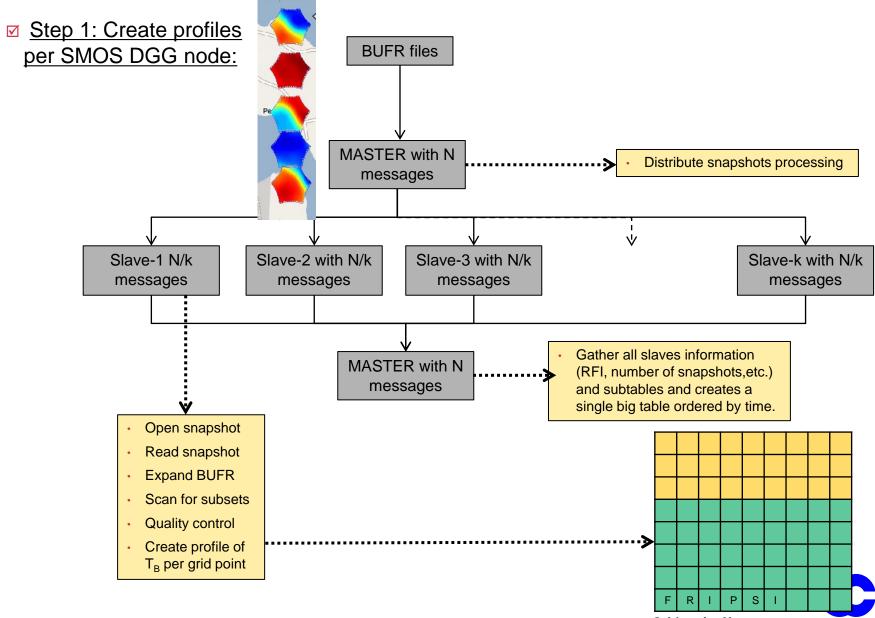
✓ What is done in a nutshell?:

- Master script to generate training database
 - · retrieve data from archives,
 - compile fortran source,
 - manage time computations
 - archive and distribute files
 - clean memory
- "Raw" BUFR decoder developed in Fortran-90 (shorter latency than 6-h pre-processed BUFR),
- Profiles of T_B per ISEA node (T_B, rad. accuracy and geometry) constructed for input semi-orbit,
- Construction of T_B per ISEA node parallelised in MPI \rightarrow Increase speed of processing,
- · Breaks between snapshots computed through a break-hit table,
- Full pure-cross T_B profiles and radiometric accuracy profile generated through linear interpolation

☑ What is left to produce a training dataset?

- Rotation antenna (X,Y) \rightarrow Earth (H,V)
- · Binning in 5-degrees,
- ☑ Soil temperature interpolated at the location and time of the SMOS observations → best would be to use a part of the L2 pre-processor (IDEAS+)

SM NRT with Neural Network

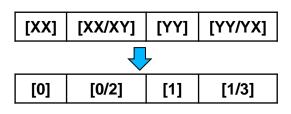

- \boxtimes What is the objective of the ECMWF T_B processor?:
 - Construct binned, HV full DGG profiles from XY observations

☑ Main steps

- Production of full profiles (T_B, geometry, flags, etc.) per SMOS DGG node,
- · Detection of gaps in a sequence of snapshots,
- Interpolation of full T_B and accuracy profiles per consecutive segments,
- Rotation antenna (X,Y) \rightarrow Earth (H,V)
- Binning and averaging
- Write output binary files and push them into a ftp (?)

NN - TB processor

Grid_point X


NN - Gaps in a sequence ; break-hit table

- ☑ Gaps in a sequence of snapshots can be generated because:
 - · Of the geometry near the swath border,
 - · Local Oscillator CALibration event (it will miss 4 science snapshots every 10 minutes),
 - RFI detected will discard a snapshot,
- ☑ The best method to detect is through snapshot_id increments (by 2 every 5, otherwise 1) and snapshot time increments (1.2 s)

 \rightarrow In BUFR, Snapshot time is composed of six INTEGER fields

Snap	Snp_inc	Pol-1	Pol	Sequence [snp.1 – snp]
1	1	3	0	[YX - XX]
2	1	0	0	$[XX - XX^*]$
3	0	0	2	[XX* – XY]
4	2	2	1	[XY - YY]
5	1	1	1	[YY – YY*]
6	0	1	3	[YY* - YX]
7	1	3	0	[YX - XX]

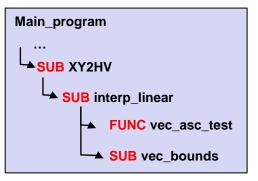
Unique sequence of polarisations

NN - Interpolation table

☑ <u>Step 3:</u> Interpolation of full T_B and accuracy profiles in consecutive segments

☑ Creation of interpolation tables

☑ Much simpler in matlab (*IBTtmp(5,flgyy)=interp1(TStmp(flgxx),IBTtmp(5,flgxx),TStmp(flgyy));*


	[XX]	[XX/XY]	[YY]	[YY/YX]	[XX]	[XX/XY]	
	1	2	3	4	5	6	
ТВхх	TBxx ₁	TBxx ₂			TBxx ₅	TBxx ₆ .	····· > Observed
ТВуу			TByy ₃	TByy ₄		-	Not defined
Re(TBxy)		Re(TBxy) ₂		Re(TByx) ₄		Re(TBxy) ₆	
Im(TBxy)		Im(TBxy) ₂		Im(TByx) ₄		lm(TBxy) ₆	Main_program
RAxx	RAxx ₁	RAxx ₂			RAxx ₅	RAxx ₆	
RAyy			RAyy ₃	RAyy ₄			SUB interp_linear
RAxy		RAxy ₂		RAyx ₄		RAxy ₆	→ FUNC vec_asc_test
θ	θ1	θ1	θ3	θ3	θ ₅	θ ₅	SUB vec_bounds
α	α ₁	α ₁	α ₃	α ₃	α ₅	α ₅	
TS	TS ₁	TS ₂	TS ₃	TS ₄	TS ₅	TS ₆	·····> Ascendent sorted

NN - Interpolation table - example

☑ <u>Step 3:</u> Interpolation of full T_B and accuracy profiles in consecutive segments

☑ Numerical example of interpolated profiles for test semi-orbit

	[XX]	[XX/XY]	[YY]	[YY/YX]	[XX]	[XX/XY]
	1	2	3	4	5	6
ТВхх	247.8	251.8	249.1	246.4	243.7	240.2
ТВуу	261.6	252.3	243.1	233.8	234.0	234.5
Re(TBxy)	-3.47	-4.99	-6.50	-8.02	-7.47	-6.36
lm(TBxy)	4.79	1.24	-2.31	-5.86	-5.60	-5.09
RAxx	3.18	5.21	4.56	3.91	3.27	5.34
RAyy	-0.91	1.21	3.33	5.46	4.98	4.01
RAxy	4.39	4.46	4.52	4.58	4.58	4.58
θ	θ ₁	θ1	θ3	θ3	θ ₅	θ ₅
α	α ₁	α ₁	α ₃	α ₃	α ₅	α ₅
TS_diff	0	1	2	3	4	6

Interpolate TBxx where there are pure YY records

Interpolate RAxx where there are pure YY records

NN - Interpolation table - example

☑ <u>Step 3:</u> Interpolation of full T_B and accuracy profiles in consecutive segments

☑ Numerical example of interpolated profiles for test semi-orbit

	[XX]	[XX/XY]	[YY]	[YY/YX]	[XX]	[XX/XY]
	1	2	3	4	5	6
TBxx	247.8	251.8	249.1	246.4	243.7	240.2
ТВуу	261.6	252.3	243.1	233.8	234.0	234.5
Re(TBxy)	-3.47	-4.99	-6.50	-8.02	-7.47	-6.36
Im(TBxy)	4.79	1.24	-2.31	-5.86	-5.60	-5.09
RAxx	3.18	5.21	4.56	3.91	3.27	5.34
RAyy	-0.91	1.21	3.33	5.46	4.98	4.01
RAxy	4.39	4.46	4.52	4.58	4.58	4.58
θ	θ ₁	θ ₁	θ3	θ3	θ ₅	θ ₅
α	α ₁	α ₁	α ₃	α ₃	α ₅	α ₅
TS_diff	0	1	2	3	4	6

Main_program
SUB XY2HV
SUB interp_linear
FUNC vec_asc_test
SUB vec_bounds

Interpolate TByy where there are pure XX records

Interpolate RAyy where there are pure XX records

SM NRT with Neural Network

☑ <u>Step 4:</u> Rotation from the antenna reference to the Earth reference frame

$$\begin{bmatrix} A_1 \\ A_2 \\ A_3 \\ A_4 \end{bmatrix} = \begin{bmatrix} \cos(\alpha)^2 & \sin(\alpha)^2 & \sin(\alpha)\cos(\alpha) & 0\\ \sin(\alpha)^2 & \cos(\alpha)^2 & -\sin(\alpha)\cos(\alpha) & 0\\ \sin(2\alpha) & -\sin(2\alpha) & \cos(2\alpha) & 0\\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} T_B H \\ T_B V \\ ST_3 \\ ST_4 \end{bmatrix}$$

$$A_{1} = \operatorname{real}(T_{B}XX)$$

$$A_{2} = \operatorname{real}(T_{B}YY)$$

$$A_{3} = 2 * \operatorname{real}(T_{B}XY)$$

$$A_{4} = -2 * \operatorname{imag}(T_{B}XY)$$

$$\alpha = \operatorname{Geometric} + \operatorname{Faraday} \operatorname{angle}$$

$$A = MR_4(\alpha) T \quad \Rightarrow MR_4^{-1}(\alpha) A = MR_4(-\alpha) A = T$$

SM NRT with Neural Network

✓ Caveats:

- Matlab code cannot directly be translated into Fortran code,
- Matlab uses lot of built-in functions (BLKDIAG, CELL, BITAND, DATESTR, DATENUM)
 - Lot of new functions need to be written
 - Use of external libraries
- BUFR is different from L1C
- ☑ Others:
 - So far, 1400 lines of code (included subroutines and functions)
 - First version of processor tested in CRAY (batch-job),
 - Optimization will probably be necessary to avoid very long runtime. Profiling will be done with gnu compiler.

