IGARSS, Valencia, Spain, 24 July 2018

SMOS data assimilation for Numerical Weather Prediction (NWP)

Patricia de Rosnay

Thanks to: Nemesio Rodríguez-Fernández, Joaquín Muñoz-Sabater, Clément Albergel, David Fairbairn, Phil Browne, Heather Lawrence, Lars Isaksen, Steve English, Filip Aires, Catherine Prigent, Matthias Drusch, Yann Kerr and Susanne Mecklenburg

ECMWF Integrated Forecasting System (IFS)

 Coupled land-atmosphere Forecast Model
 Data Assimilation: atmosphere (4D-Var), land (SEKF,OI), ocean (3D-Var)

Units: Thousand cubic km for storage, and thousand cubic km/yr for exchanges

Current operational NWP system at ECMWF weakly coupled land-atmosphere-wave and sea ice assimilation

→ Importance of the interface observations for consistent initialisation of coupled land-atmosphere forecasts

 \rightarrow SMOS observations highly relevant for coupled assimilation

ECMWF Soil Analysis submitted for IFS 46r1 (2019)

L-band assimilation in ECMWF IFS

SMOS TB assimilation

Atmospheric forecasts evaluation for MJJAS 2013

SMOS neural network assimilation in H-TESSEL

SMOS neural network soil moisture data assimilation

N. Rodríguez-Fernández (1), P. De Rosnay (2), C. Albergel (2), F. Aires (4), C. Prigent (4) P. Richaume (1), Y. Kerr (1), M. Drusch (5)

Creating a new SMOS soil moisture dataset specific for the data assimilation experiment

×

Instead of computing the complex radiation transfer trough the biosphere why not linking directly the best remote sensing observations to the best NWP models ? Prigent & Aires 2006, JGR; Prigent, Aires, et al. 2005, JGR

- One interesting application will be efficient Data Assimilation. The retrieved datasets are similar to the model fields, by construction, but they are driven by the remote sensing input data *Aires*, *Prigent*, *Rossow 2005*, *JGR*
- Neural network SM can be produced in near-real-time and with associated errors *Rodriguez-Fernandez, Muñoz-Sabater et al. (in prep)*

The ECMWF surface-only Land Data Assimilation System

Offline surface model (HTESSEL, *Balsamo et al. 2009*) forced by ERA-Interim reanalysis

Soil moisture analysis : T2m, RH2m, ASCAT SM, SMOS NN SM

Simplified EKF equation. The analysis state is applied at the beginning of the assimilation window

Poster on Wednesday morning, WEP1.PR.10 poster area R (10:10-11:10)

2018: New SMOS neural network processor for data assimilation

Example on 01 June 2016:

- 27 NRT TB files received → 27 SMOS NN **Netcdf** files produced and archived at ECMWF (ECFS)

Preprocessing (NRT):
Regridding, conversion GRIB,
6-hours grib files,
[SSM, SSM error (ε), obs time, RFI proba, nb obs]

 \rightarrow Suitable and ready to DA in IFS

SMOS neural network assimilation in the IFS: Numerical experiments

Best candidate SMOS and EDA-SEKF proposed for operational usage in IFS cycle 46r1:

- **CTRL**: current IFS 45r1 (Finite difference SEKF, uses T2m, RH2m, ASCAT SM)
- **SMOS_DA**: CTRL+SMOS NN DA (obs error =0.02+3*ε, RFI filter 20%)
- **EDA_SMOS_DA**: proposed for 46r1 (SMOS_DA + EDA_SEKF with 50 EDA members)

Two sets of experiments (standard for ECMWF future IFS cycle testing):

- Summer June-July-August 2017
- Winter December-January-February 2016-2017

Resolution testing for candidates 46r1: Tco399 (25 km)

New soil analysis: EDA SEKF and SMOS NN DA

Technical work for 46r1

- Use the EDA to compute the SEKF Jacobian
- SMOS neural network soil moisture assimilation
- CPU reduction from EDA_SEKF, cost neutral for SMOS

	NPES*THREADS	45r1	46r1
Tco 1279	300*9	1580	435
TCo399	54*6	815	235

Reduction of the SEKF CPU cost by a factor ~3.6

SMOS innovation (obs-model) 01 August 2017 (m3/m3)

Atmospheric impact (T2m) compared to CTRL

SMOS neural network data assimilation: forecast impact

EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

© ECMWF

SMOS neural network data assimilation: forecast impact T_{+24}

SMOS neural network data assimilation: Fit between IFS first guess and independent observations (obs-model)

Aircraft humidity (JJA 2017)

Aircraft temperature (JJA 2017)

© ECMWF

Evaluation of surface and root zone soil moisture against in situ data

More than 300 stations in US and Europe (SCAN, USCRN, SNOTEL and SMOSMANIA)

Experiment	R		Ranom		uRMSD		Bias	
	surface	root Zone						
CTRL (oper)	0.617	0.65	0.518	0.428	0.052	0.031	0.06	0.058
SMOS DA (oper+SMOS DA)	0.609	0.667	0.507	0.443	0.052	0.030	0.058	0.052
SMOS+EDA (oper+SMOS+EDA)	0.623	0.64	0.521	0.421	0.051	0.029	0.055	0.052

SMOS Neural Network assimilation in the IFS combined with the EDA SEKF

→ Small impact, but on a slight improvement side in soil moisture

SMOS contribution to improve root zone soil moisture (systematic on all four networks)

Summary and perspectives

- Current: SMOS neural network SM assimilation in review for operational NWP
- Next: Assessment of SMOS NN soil moisture assimilation for consistent NWP and flood forecasting systems

The Global Flood Awareness System

