Assimilation of land surface satellite data for Numerical Weather Prediction at ECMWF

P. de Rosnay, J. Muñoz Sabater, C. Albergel, N. Rodríguez-Fernández, L. Isaksen, G. Balsamo, F. Pappenberger and S. English
Introduction: Land Surface for Numerical Weather Prediction (NWP)

Land surfaces:
- Boundary conditions at the lowest level of the atmosphere
- Processes: Continental hydrological cycle, interaction with the atmosphere on various time and spatial scales
- Crucial for near surface weather conditions, whose high quality forecast is a key objective in NWP

Land Surface Models (LSMs) prognostic variables:
- Soil moisture
- Soil temperature
- Snow mass, temperature, density

Land surface initialization
Important for NWP & Seasonal Prediction
Forecast Model: GCM including the H-TESSEL land surface model (coupled)

Data Assimilation → initial conditions of the forecast model prognostic variables
- 4D-Var for atmosphere
- Land Data Assimilation System
Introduction: Land Surface Data Assimilation (LDAS)

Snow depth
- Methods: Cressman (DWD, ECMWF ERA-I), 2D Optimal Interpolation (OI) (ECMWF, CMC, JMA)
- **Conventional observations**: *in situ* snow depth
- **Satellite data**: NOAA/NESDIS IMS Snow Cover

Soil moisture (SM)
- Methods:
 - 1D Optimal Interpolation (Météo-France, ALADIN and HIRLAM)
 Analytical nudging approach (BoM), EnsOI CMC
 - Simplified Extended Kalman Filter (EKF) (DWD, ECMWF, UKMO)
- **Conventional observations**: Analysed SYNOP 2m air relative humidity and air temp.
- **Satellite data**: EUMETSAT ASCAT soil moisture (UKMO, ECMWF),
 ESA SMOS brightness temperature development (ECMWF, UKMO, CMC),
 NASA SMAP development

Soil Temperature and Snow Temperature 1D-OI using analysed T2m as observation
Snow data assimilation

Snow Model: Component of H-TESSEL

(Balsamo et al., JHM 2009, Dutra et al., 2010)
- Snow water equivalent SWE (m), ie snow mass
- Snow density ρ_s, between 100 and 400 kg/m³

Observations:
- Conventional snow depth data: SYNOP and National networks
- Snow cover extent: NOAA NESDIS/IMS daily product (4km)

de Rosnay et al, ECMWF News Letter 143, Spring 2015

- Ongoing COST action on snow (HarmoSnow)
- GCW Snow Watch action on snow

Data Assimilation Approach:
Optimal Interpolation (OI) in oper IFS

de Rosnay et al, Survey of Geophysics 2014
Snow analysis: Forecast impact

Revised IMS snow cover data assimilation

Impact on snow October 2012 to April 2013 (using 251 independent observations)

Impact on atmospheric forecasts
October 2012 to April 2013 (RMSE new-old)

→ Consistent improvement of snow and atmospheric forecasts

de Rosnay et al., ECMWF NL 143, Spring 2015
Operational snow analysis: winter 2014-2015

Snow monitoring:

Soil Analysis in the IFS

NWP Forecast
Coupled Land-Atmosphere

T_2m RH_2m bg
SWVL1, SWVL2, SWVL3 bg
Jacobians, screen obs operator

Screen level analysis (OI)
T_2m RH_2m
\(\sigma^o_{T2m} = 2K \) \(\sigma^o_{RH2m} = 10\% \)

Soil Analysis (SEKF)
SWVL1, SWVL2, SWVL3
\(\sigma^o_{T2m} = 1K \) \(\sigma^b = 0.01 m^3 m^{-3} \)
\(\sigma^o_{RH2m} = 4\% \) \(\sigma^o_{ASCAT} = 0.05 m^3 m^{-3} \)

ASCAT SM OBS

ASCAT operational implementation
→ Operational soil moisture data assimilation: combines SYNOP and satellite data

Note: Only two NWP centres use satellite soil moisture in operations (UKMO and ECMWF)
ASCAT Soil Moisture data assimilation

Innovation (Obs-model)
25-30 June 2013

ASCAT (m³/m³)

Accumulated Increments (m³/m³)
in top soil layer (0-7cm)

Due to ASCAT

Due to SYNOP T2m and RH2m
ASCAT Soil Moisture data assimilation

Volumetric Soil Moisture increments (m³/m³) (accumulated)

Layer1 (0-7cm)
Layer2 (7-28cm)

ASCAT more increments than SYNOP at surface
SYNOP give more increments at depth
→ For 12h DA window, link obs to root zone stronger for T2m,RH2m than for surface soil moisture observations

Layer1:
Most increments due to ASCAT

Layer2:
Most increments due to SYNOP T2m & RH2m

Vertically integrated Soil Moisture increments (stDev in mm)

<table>
<thead>
<tr>
<th>Layer</th>
<th>SYNOP</th>
<th>ASCAT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Layer 1</td>
<td>0.68</td>
<td>1.43</td>
</tr>
<tr>
<td>Layer 2</td>
<td>1.48</td>
<td>0.68</td>
</tr>
<tr>
<td>Layer 3</td>
<td>4.28</td>
<td>0.46</td>
</tr>
</tbody>
</table>
ERA5 preparation
Assimilation of ASCAT reprocessed SM data

Surface data assimilation in the future reanalysis ERA5
Preparatory tests using operational and reprocessed data sets

<table>
<thead>
<tr>
<th></th>
<th>FG departure Mean m³m⁻³</th>
<th>FG departure StDev m³m⁻³</th>
</tr>
</thead>
<tbody>
<tr>
<td>CTRL</td>
<td>0.013</td>
<td>0.05</td>
</tr>
<tr>
<td>REPROC</td>
<td>0.006</td>
<td>0.044</td>
</tr>
</tbody>
</table>

-Reprocessed ASCAT soil moisture:
Reduced background departure statistics both in mean and Stdev

Ongoing tests to use ERS reprocessed soil moisture DA
→ ERA5 will assimilate scatterometer soil moisture for 1991-present

Also use the reprocessed IMS snow cover 4km product (2004-present)
EUMETSAT H-SAF soil moisture

Scatterometer root zone soil moisture based on data assimilation

H14/SM-DAS-2: NRT product operational since July 2012
H27/SM-DAS-3: Thematic Data Record SCAT root zone soil moisture for 1992-2014

Based on Surface-only Land Data Assimilation System:
Assimilation of ASCAT reprocessed data and screen level analysed T2M, RH2M

Albergel et al.
Evaluation of SM-DAS-2/H14
Surface and root zone liquid soil moisture content

Accuracy requirements for product SM-DAS-2 [R]

<table>
<thead>
<tr>
<th>Unit</th>
<th>Threshold</th>
<th>Target</th>
<th>Optimal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimensionless</td>
<td>0.50</td>
<td>0.65</td>
<td>0.80</td>
</tr>
</tbody>
</table>

Observation (5cm) SM-DAS-2 (0-7cm)

200 stations across the USA
SMOS Forward modelling and Bias correction

- **CMEM: ECMWF Community Microwave Emission Modelling Platform** → produce reanalysed ECMWF SMOS TB for 2010-2013
- Comparison between ECMWF TB and SMOS reprocessed data
- **Consistent improvement of SMOS data** at Pol xx and yy, for incidence angles 30, 40, 50 degrees

de Rosnay et al, in prep RSE

Anomaly correlation

![Graph showing anomaly correlation over polarisation (x or Y) and incidence angle (30, 40, 50)]

RMSE

![Graph showing RMSE over polarisation (x or Y) and incidence angle (30, 40, 50)]
Preparation for operational assimilation of SMOS T_B

CTRL (operational system): T^{2m}, RH^{2m}, ASCAT

Observation error (R):
- $T^{2m} \Rightarrow \sigma(T_{2m}) = 1 \text{ K}$; $RH^{2m} \Rightarrow \sigma(RH_{2m}) = 4\%$;
- ASCAT $\Rightarrow \sigma(SM_{ASCAT}) = 0.05 \text{ m}^3\text{m}^{-3}$
- SMOS $T_B \Rightarrow \sigma(T_B) = 6 + p \cdot \text{rad_acc K}$

Background error (B):

<table>
<thead>
<tr>
<th>Depth</th>
<th>ϵ</th>
<th>Water Content</th>
<th>m^3m^{-3}</th>
</tr>
</thead>
<tbody>
<tr>
<td>0-7 cm</td>
<td>$20%$ WHC</td>
<td>$0.03-0.08$</td>
<td></td>
</tr>
<tr>
<td>7-28 cm</td>
<td>$10%$ WHC</td>
<td>$0.015-0.04$</td>
<td></td>
</tr>
<tr>
<td>28-72 cm</td>
<td>$5%$ WHC</td>
<td>$0.008-0.02$</td>
<td></td>
</tr>
</tbody>
</table>

Config.1
- $p=1 \sim [8.5-10] \text{ K}$

Config.2
- $p=1 \sim [8.5-10] \text{ K}$

Config.3
- $p=3 \sim [13.5-18] \text{ K}$

Muñoz-Sabater et al.
SMOS data assimilation impact on atmospheric scores

Normalized change in rms of fc error:

SH- extratropics

Tropics

NH- extratropics

Configuration 3

Muñoz-Sabater et al.
An official ESA Near-Real-Time product based on Neural Networks

NRT prototype designed and evaluated by CESBIO (Rodriguez-Fernandez et al.)

SMOS NRT SM vs SMOS L3 SM:
Average temporal correlation = 0.8

Average stats vs USDA SCAN in situ measurements better than SMOS L3

<table>
<thead>
<tr>
<th>Input</th>
<th>STD</th>
<th>R</th>
<th>Bias</th>
</tr>
</thead>
<tbody>
<tr>
<td>NN</td>
<td>0.049</td>
<td>0.55</td>
<td>-0.024</td>
</tr>
<tr>
<td>SMOS L3</td>
<td>0.064</td>
<td>0.50</td>
<td>-0.026</td>
</tr>
</tbody>
</table>

NRT operational implementation in progress at ECMWF (Muñoz-Sabater et al.)

- A SM product very similar to the current operational one but in Near-Real-Time
- ESA product distributed by GTS and EUMETCAST

More information in the poster by Rodriguez-Fernandez et al.
Summary

• Most NWP centres analyse soil moisture and/or snow depth
• Satellite data used for snow cover and soil moisture analyses
 • Snow: NOAA NESDIS/IMS 4km snow cover data (multi-sensor product). No Snow Water Equivalent products used for NWP (yet)
• Soil moisture: ASCAT operational since May 2015 at ECMWF.
• SMOS TB: preparation and tests for NWP, SMAP developments
• SMOS SM: NRT processor implementation
• Observation latency: crucial for NWP applications (<3h)
• Longer term development for satellite observations usage:
 - Use of MW data to analyse snow depth
 - Integrated hydrological variables such as river discharges
Thank you for your Attention!

Contact: Patricia.Rosnay@ecmwf.int

Useful links:

ECMWF LDAS: https://software.ecmwf.int/wiki/display/LDAS/LDAS+Home
ECMWF SMOS: https://software.ecmwf.int/wiki/display/LDAS/SMOS
ECMWF CMEM: https://software.ecmwf.int/wiki/display/LDAS/CMEM

ECMWF Land Surface Observation monitoring:
https://software.ecmwf.int/wiki/display/LDAS/Land+Surface+Observations+monitoring