
Advanced Job Launching

A Quick Recap - Glossary of terms

● Hardware

This terminology is used to cover hardware from multiple vendors
● Socket

The hardware you can touch and insert into the mother board
● CPU

The minimum piece of hardware capable of running a PE. It may share some or all
of its hardware resources with other CPUs
Equivalent to a single “Intel Hyperthread”

● Compute Unit (CU) or Core
The individual unit of hardware for processing. May provide one or more CPUs.

● Software

Different software approaches also use different naming convention. This is
the software-neutral convention we are going to use :

● Processing Element (PE)

A discrete software process with an individual address space. One PE is
equivalent to a UNIX task, MPI Rank, Coarray Image, UPC Thread, or
SHMEM PE

● Threads
A logically separate stream of execution inside a parent PE that shares the same
address space (OpenMP, Pthreads)

Launching ESM Parallel applications

● ALPS : Application Level Placement Scheduler
● aprun is the ALPS application launcher

● It must be used to run applications on the XC compute nodes in
ESM mode, (either interactively or as a batch job)

● If aprun is not used, the application will be run on the MOM node
(and will most likely fail).

● aprun launches sets of PEs on the compute nodes.

● aprun man page contains several useful examples

● The 4 most important parameters to set are:

Description Option

Total Number of PEs used by the application -n

Number of PEs per compute node -N

Number of threads per PE
(More precise, the “stride” between 2 PEs on a node)

-d

Number of to CPUs to use per Compute Unit -j

Running applications on the Cray XC30:
Some basic examples

Assuming an XC node with 12 core Intel processor
● Each node has: 48 CPUs/Hyperthreads and 24 Compute Units/cores

● Launching a basic MPI application:
● Job has 1024 total ranks/PEs, using 1 CPU per Compute Unit meaning

a maximum of 24 PEs per node.

 $ aprun –n 1024 –N 24 –j1 ./a.out

● To launch the same MPI application but spread over twice
as many nodes

 $ aprun –n 1024 –N 12 –j1 ./a.out
● Can be used to increase the available memory for each PE

● To use all availble CPUs on a single node

● (maximum now 48 PEs per node)

 $ aprun –n 1024 –N 48 –j2 ./a.out

Some examples of hybrid invocation

● To launch a Hybrid MPI/OpenMP application:
● 1024 total ranks, using 1 CPU per Compute Unit (Max 24 Threads)

● Use 4 PEs per node and 6 Threads per PE

● Threads set by exporting OMP_NUM_THREADS
 $ export OMP_NUM_THREADS=6
 $ aprun –n 1024 –N 4 –d $OMP_NUM_THREADS –j1 ./a.out

● Launch the same hybrid application with 2 CPUs per CU
● 1024 total ranks, using 2 CPU per Compute Unit (Max 48 Threads)

● Use 4 PEs per node and 12 Threads per PE
 $ export OMP_NUM_THREADS=12
 $ aprun –n 1024 –N 4 –d $OMP_NUM_THREADS –j2 ./a.out

Default Binding - CPU

● By default aprun will bind each PE to a single CPU for the
duration of the run.

● This prevents PEs moving between CPUs.

● All child processes of the PE are bound to the same CPU

● PEs are assigned to CPUs on the node in increasing order
from 0. e.g.

0

0

1

1

2

2

23

23 …

0

24

1

25

2

26

23

47 …

Node 1 Node 0

1 Software PE

is bound to

1 Hardware CPU
aprun –n 48 –N 24 –j1 a.out

Default Thread Binding (pt 1)

● You can inform aprun how many threads will be created by
each PE by passing arguments to the –d (depth) flag.

● aprun does not create threads, just the master PE.

● PEs are bound to CPU spaced by the depth argument, e.g

0

0

1 2

1

22

11 …

Node 0

1 Software PE

is bound to

1 Hardware CPU

aprun –n 24 –N 12 –d2 –j1 a.out

23 0

12

1 2

13

22

23 …

Node 1

23

● Each subsequently created child processes/thread is
bound by the OS to the next CPU (modulo by the depth argument).
e.g.

● Each PE becomes the master thread and spawns a new
child thread. The OS binds this child thread to the next
CPU.

Default Thread Binding (pt 2)

0

0.0

1 2

1.0

22

11.0 …

Node 0

OMP_NUM_THREADS=2
aprun –n 24 –N 12 –d2 –j1 a.out

23 0 1 2 22

…

Node 1

23

0.1 11.1 12.0 12.1 23.0 23.1 13.0

● aprun cannot prevent PEs from spawning more threads
than requested

● In such cases threads will start to “wrap around” and be
assigned to earlier CPUs.

● e.g.

● In this case, the third thread is assigned to the same CPU
as the master PE causing contention for resources.

Default Thread Binding (pt 3)

0

0.0

1 2

1.0

22

11.0 …

Node 0

OMP_NUM_THREADS=3
aprun –n 24 –N 12 –d2 –j1 a.out

23 0 1 2 22

…

Node 1

23

0.1 11.1 12.0 12.1 23.0 23.1 13.0
0.2 1.2 11.2 12.2 11.0 23.2

● aprun can be prevented from binding PEs and their
children to CPUs, by specifying “–cc none”. E.g.

● All PEs and their child processes and threads are allowed
to migrate across cores as determined by the standard
Linux process scheduler.

● This is useful where PEs spawn many short lived children
(e.g. compilation scripts) or over-subscribe the node.

● (-d removed as it no longer serves a purpose)

Removing binding entirely

0 1 2 22

…

Node 0

OMP_NUM_THREADS=3
aprun –n 24 –N 12 –-cc none –j1 a.out

23 0 1 2 22

…

Node 1

23

1.0-11.2

…
12.0-23.2

Cray XC Compute Node

NUMA Node 1 NUMA Node 0

NUMA Nodes

The design of the XC
node means that CPUs
accessing data stored on
the other socket/die have
to cross the QPI inter-
processor bus

This is marginally slower
than accessing local
memory and creates
“Non-Uniform Memory
Access” (NUMA) regions.

Each XC node is divided
into two NUMA nodes,
associated with the two
sockets/dies.

Intel® Xeon®

12 Core die

Aries

Router

Intel® Xeon®

12 Core die

Aries NIC

64 GB 64 GB

PCIe 3.0

Aries

Network

QPI

DDR3

NUMA nodes and CPU binding (pt 1)

● Care has to be taken when under-populating node
(running fewer PEs than available CPUs). E.g.

● The default binding will bind all PEs to CPUs in the first
NUMA node of each node.

● This will unnecessarily push all memory traffic through
only one die’s memory controller. Artificially limiting
memory bandwith.

0

0

1

…

Node 0

11

NUMA Node 0

12 23

…

NUMA Node 1

0

12

1

…

Node 1

23

NUMA Node 0

12 23

…

NUMA Node 1

aprun –n 24 –N 12 –j1 a.out

NUMA nodes and CPU binding (pt 2)

● The -S <PEs> flag tells aprun to distribute that many PEs
to each NUMA node, thus evening the load.

● PEs will be assigned to CPUs in the NUMA node in the
standard order, e.g. 0-5 & 12-17. However all CPUs within a
NUMA node are essentially identical so there are no
additional imbalance problems.

0

0

1

…

Node 0

NUMA Node 0

12 23

…

NUMA Node 1

0

12

1

…

Node 1

NUMA Node 0

12 23

…

NUMA Node 1

aprun –n 24 –N 12 –S 6 –j1 a.out

6 18

Binding to NUMA nodes

● As well as completely removing binding, it is also possible
to make aprun bind PEs to all the CPUs on a NUMA node.

● PEs will be assigned to the NUMA node that their original
PE would have been assigned to with CPU binding and the
same options.

● OS allowed to migrate processes within the NUMA node,
should be better performance than no binding. “–cc none”

0 1

…

Node 0

NUMA Node 0

12 23

…

NUMA Node 1

0 1

…

Node 1

NUMA Node 0

12 23

…

NUMA Node 1

aprun –n 24 –N 12 –S 6 –j1 –-cc numa_node a.out

0-5
…

6-11
…

12-17
…

18-23

Be aware – Intel Helper Threads

● The Intel OpenMP runtime creates more threads than you
might expect
● It creates an extra helper thread

 (OMP_NUM_THREADS+1 threads int total)

● It also has it’s own method of binding to CPUs (KMP_AFFINITY)

● Unfortunately both of these options can make things more
complicated due to the interactions with CLE binding

● Cray advice…
● Don’t use KMP_AFFINITY to bind threads:

● export KMP_AFFINITY=disabled
● use one of the following options:

● aprun –-cc [numa_node|none|depth] <exe>
● aprun –-cc 0,x,1,… (the x means don’t bind)

Binding to a CPU set: -depth

● An extension to “numa_node” is the option -cc depth.

● depth defines that a ‘cpu set’ should be used where all
threads belonging to a rank are “unbound”.
The size of the cpu set is given by the –d option

● Solves the ‘Intel Helper Thread’ issue and also the
‘oversubscribing’ of threads.

0 3

…

Node 0

Rank 0

4 7

…

Rank 1

aprun –n 6 –d4 –-cc depth –j1 a.out

0.0-0.3
…

1.0-1.3

20 23

…

Rank 5

…
5.0-5.3 …

Cray XC Compute Node

NUMA Node 1 NUMA Node 0

Strict Memory Containment

● Each XC node is an shared
memory device.

● By default all memory is
placed on the NUMA node of
the first CPU to “touch” it.

● However, it may be beneficial
to setup strict memory
containment between NUMA
nodes.

● This prevents PEs from one
NUMA node allocating
memory on another NUMA
node.

● This has been shown to
improve performance in
some applications.

aprun –ss –n 48 –N 12\
 –S 6 a.out

Intel® Xeon®

12 Core die

Aries

Router

Intel® Xeon®

12 Core die

Aries NIC

64 GB 64 GB

PCIe 3.0

Aries

Network

QPI

DDR3

X

All examples up to now have assumed “-j1” or “Single
Stream Mode”.
In this mode, aprun binds PEs and ranks to the 24 Compute
Units (e.g. only use CPUs 0-23)

24 25 26 27 28 29 30 31

Ignore Hyperthreads; “-j1” Single Stream Mode

0 1 2 3 4 5 6 7

NUMA Node 0

CPUs 24-47

Ignored

 Hyperthread

pair /

Compute

Unit

32

8

33

9

34

10

35

11

36 37 38 39 40 41 42 43

12 13 14 15 16 17 18 19

NUMA Node 1

44

20

45

21

46

22

47

23

Specifying “-j2” in aprun assigns PEs to all of the 48 CPUs
available. However CPUs that share a common Compute
Unit are assigned consecutively

This means threads will share Compute Units with default binding

24 25 26 27 28 29 30 31

Include Hyperthreads “-j2” Dual Stream Mode

0 1 2 3 4 5 6 7

NUMA Node 0

32

8

33

9

34

10

35

11

36 37 38 39 40 41 42 43

12 13 14 15 16 17 18 19

NUMA Node 1

44

20

45

21

46

22

47

23

 Hyperthread

pair /

Compute

Unit

Custom Binding

● aprun also allows users to customise the binding of PEs
to CPUs.
● Users may pass a colon separated list of CPU binding options to the –

cc option.

● The nth PE on the node is bound by the nth binding option.

● Each PE binding option may be either a single CPU or a
comma separated list of CPUs.
● Specifying a single CPU forces the PE and all children and threads to

the same PE

● Specifying a comma separated list binds the PE to the first CPU in the
list and children and threads on to the subsequent CPUs (round-robin)

● Additional PEs will be left unbound.

Custom Binding (example)

● Custom binding can be hard to get right. The xthi
application is useful for testing binding.
● Source code available in S-2496 (Workload Management and

Application Placement for the Cray Linux Environment) Section 8.7 at
docs.cray.com

> export OMP_NUM_THREADS=2
> aprun –n 4 –N 16 –-cc 3,2:7,8:9,10,4:1 xthi | sort
Hello from rank 0, thread 0, on nid00009. (core affinity = 3)
Hello from rank 0, thread 1, on nid00009. (core affinity = 2)
Hello from rank 1, thread 0, on nid00009. (core affinity = 7)
Hello from rank 1, thread 1, on nid00009. (core affinity = 8)
Hello from rank 2, thread 0, on nid00009. (core affinity = 9)
Hello from rank 2, thread 1, on nid00009. (core affinity = 10)
Hello from rank 3, thread 0, on nid00009. (core affinity = 1)
Hello from rank 3, thread 1, on nid00009. (core affinity = 1)

CPU Specialisation

● Despite the low-noise nature of the XC30’s CNL Linux OS
it occasionally is necessary to run OS/kernel/daemon
processes on CPUs.

● If all CPUs are in use then the OS must swap a user
process out to execute the OS/kernel/deamon process.

● Normally this introduces only a small amount of noise to
the application which evens out over the length of the run.

● However, there are certain pathological cases which
amplify these delays if there are frequent
synchronisations between nodes (e.g. collectives)
preventing scaling.

● CPU specialisation reserves some CPUs for the
OS/system/deamon tasks (like OS, MPI progress engines,
deamons). This improves overall performance

CPU Specialisation (pt 2)

● On the XC the reserved CPU’s are automatically chosen to
be from any unused CPUs on Compute Units (e.g. spare
Hyperthreads), even if “-j1” has been selected.

● You can specify precisely how many free cores/cpus are
used using the –r option to reserve them

 aprun –n 1024 –N 24 –r 8 –j 1 a.out
 aprun –n 2048 –N 40 –r 8 –j 2 a.out

● Set MPICH_NEMESIS_ASYNC_PROGRESS to enabled and note

that MPICH_MAX_THREAD_SAFETY should be set to
multiple.
 see man mpi

Multiple Program Multiple Data Mode

● As well as launching Single Program Multiple Data (SPMD)
programs aprun is capable of launching programs as
Multiple Program Multiple Data (MPMD).

● By passing multiple sets of arguments separated by a
colon, multiple programs can be launched within the same
communication framework (e.g. MPI_COMM_WORLD). e.g.

aprun –n 480 –N 24 atmosphere.exe : -n 96 –N 12 –d 2 ocean.exe

● Each different group of PEs is launched on their own
unique set of nodes. Global ID (e.g. ranks) are assigned in
increasing order from left to right (i.e. rank 0 is always part
of the first binary).

Some other useful aprun options

Option Description

-b Disable binary transfer. Prevents ALPS from reading the executable on

the login node and distributing it to participating compute nodes. Instead

each node will read the binary from the filesystem (assuming it is

mounted)

-q Quiet mode, suppress all non-fatal error messages.

-T Synchronizes the applications stdout and stderr to prevent interleaving

of their output.

Using OpenMP 4.0 binding

● New features in OpenMP 4.0 allow setting environment
variables to control thread affinity

● The OMP_PROC_BIND (implementation dependent) and
OMP_PLACES environment variables may be used for this

 export OMP_PROC_BIND=true
 export OMP_PLACES=cores
 export OMP_NUM_THREADS=4
 aprun –n1 –j1 –d $OMP_NUM_THREADS –cc none a.out

● Use with care, recommendation is to let ALPS do the

scheduling

