Exercise 2 : Solution

Paul Burton
January 2016

c ECMWF Exercise 2 Solution

General Guidance

e Break it into managable pieces to deal with

- Already nicely broken down into neat subroutines!

e Look at the data structures

- How are you going to split between processors?

c ECMWF Exercise 2 Solution

Parallel Initialisation

e Need to find out from MPI:

- How many processors? (NTasks)

= CALL MPI COMM SIZE (MPI_COMM WORLD,NTasks,ierror)
- What is my ID/Rank? (MyTask)

* CALL MPI_COMM RANK (MPI_ COMM WORLD,MyTask,ierror)
- Who are my neighbours?

= MyNeighbourLeft=MyTask-1

= MyNeighbourRight=MyTask+1

- Don’t forget the wrap around, so it’s a bit different for MyTask=0
and MyTask=NTasks-1

- Calculate NPointsPerTask

'CECMWF Exercise 2 Solution

Call Model _Driver

e No longer with npoints (Total number of points)

- Use NPointsPerTask (from Parallel Info Mod)

c ECMWF Exercise 2 Solution

Read Data

e Read all the data on Task O

- Need some logic to select the right task

- We’ll need a temporary array to hold the data on task 0
e Then scatter the data from Task O to all the tasks

- Could use SEND/RECV
- Easier to use MPI_SCATTER

Task O

Task 0 [[iDataAzzayl

Task 1 [DataArray |

Task 2 _

Task 3 [DataArray |

'c ECMWF Exercise 2 Solution

Sum_Data

e First calculate local sum
e Then add together all the local sums

- Put theresult on task O

- Could have all tasks sending local sum to task O

= Task 0 would then add these up
- Better solution is to use MPI_REDUCE

= Which does it all for you (efficiently hopefully!)

Task 0 [[Datafrzray | Y= [> [Msum
+ i
Task 1 [[Datafzzayiy] Y= [15
+ A
Task 2 [[DataArray 7|) = -Tfﬂ|
+
Task 3 [[Datadzray | Y= [th
Sum =

c ECMWF Exercise 2 Solution

Finite_Difference

e Copy DataArray to OldData

But overdimension OldData (0 :npoints+1)

Wel’<ll use the extra points at start and end as copies of points from the neighbouring
tasks

e Communication

Could use SEND / RECV - but need to avoid blocking
Easier to use SENDRECV

send to lef m

Task O Task 1 Task 2 Task 3
send to right m
Task O Task 1 Task 2 Task 3

e Do calculation from 1 to npoints

c ECMWF Exercise 2 Solution

Write_Data

e Reverse of Read Data

e Collect all the data onto Task O
- We'll need a temporary array to hold the data on task 0

e Gather the data from the tasks to Task O

Could use SEND/RECV
- Easier to use MPI_Gather

Task 0 [[DataArray |

Task 1 [DataArray |

Task 2 J [DataArray |
Task 3 v l

Task O

e And then write to disk on Task O

'c ECMWF Exercise 2 Solution

