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Overview 

•  Introduction 
–  Why do forecast go wrong? 

–  Observations, model, “chaos” 

•  The ECMWF ensemble 

–  How does the ENS represent uncertainties? 

–  Configuration of the ENS 

•  ENS products  
–  Very short overview – much more in rest of course 

•  Evaluation of the ENS  

•  Use of ENS  

–  Probabilities and decision support 
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Why are forecasts sometimes wrong? 

•  Initial condition uncertainties 
–  Lack of observations 

–  Observation error 

–  Errors in the data assimilation 

•  Model uncertainties  
–  Limited resolution 

–  Parameterisation of physical processes 

•  Boundary condition uncertainties 

•  The atmosphere is chaotic 
–  small uncertainties grow to large errors (unstable flow)  

–  small scale errors will affect the large scale (non-linear dynamics) 

–  error-growth is flow dependant 

Even very good analyses and forecast models are prone to errors 
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Chaos - the Lorenz attractor 
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Tim Palmer, Oxford University 
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Flow dependence of forecast errors 
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Representing uncertainty - ensemble forecasts 

•  A set of forecasts run from slightly different initial conditions to 
account for initial uncertainties 

•  The forecast model also contains approximations that can affect 
the forecast evolution 

–  Model uncertainties are often represented using “stochastic 
physics” 

•  The ensemble of forecasts provides a range of future scenarios 
consistent with our knowledge of the initial state and model 
capability 

–  Provides explicit indication of uncertainty in today’s forecast 
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Global medium-range ensembles 

•  All operational global medium-range ensemble systems represent initial uncertainty 

•  Most also include some representation of model uncertainty 

•  Different centres use different approaches 

•  Some centres combine ensembles from different start times to increase ensemble size (lagged) 
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Initial uncertainty Model 
uncertainty

Time-range
days

Resol. (km) Ens. Size Freq.

ECMWF SV (NH, SH, Tr)
+EDA (globe)

YES 15/46 32/64 51 00/12

UKMO ETKF (globe) YES 7 60 24 00/12

NCEP ETR (globe) YES 16 90/120 21 00/06/12/18

EC EnKF YES 16/32 75 21 00/12

JMA SV (NH, SH, Tr) YES 11 50 33 00/12

KMA ETKF (globe) YES 10 40 24 00/06/12/18

CMA BV (globe) NO 10 70 15 00/12

CPTEC EOF (40S-30N) NO 15 120 15 00/12
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Ensemble of data assimilations (EDA) 

•  EDA (initial EPS perturbations since June 2010) 
–  Control + 25 ensemble members using 4D-Var 

assimilations 

–  T399 outer loop 

–  T95/T159 inner loop (reduced number of iterations) 

–  Model error: Stochastically Perturbed 
Parametrization Tendencies 

–  Randomly perturbed observations and SST fields 

•  EDA perturbations are not sufficient by themselves 

–  Additional initial perturbations based on “singular 
vectors” 
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Initial uncertainties – singular vectors 

•  The number of ensemble members is limited by available computer resources. How can we 
produce suitable perturbations? 

•  Look for perturbations that will grow fastest 

•  Singular vectors: perturbations that produce the greatest (linear) difference (total energy) over a 
fixed time interval (48 hours) 

–  Uses the same tangent-linear and adjoint models as used for the 4D-Var analysis 

•  50 perturbations generated by random (Gaussian) sampling from 50 singular vectors. Amplitude 
tuned to match error 

•  Tropical cyclones:  
–  Up to 6 areas centred on existing tropical cyclones 

–  5 singular vectors per area, Gaussian (random) sampling 

–  “moist SVs” – TL includes diabatic processes (large-scale condensation, convection, radiation, gravity-
wave drag, vert. diff. and surface friction) 
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ENS initial perturbations 

•  SV- and EDA-based perturbations have different characteristics: 
–  EDA-based perturbations are less localized than SV-based perturbations. They have a larger amplitude 

over the tropics. EDA-perturbations are more barotropic than SV-based perturbations, and grow less 
rapidly.  

–  At initial time, SV-based perturbations have a larger amplitude in potential than kinetic energy, while 
EDA-based perturbations have a similar amplitude in potential and kinetic energy 

•  Since June 2010 SV- and EDA-based perturbations are used together to construct the initial 
perturbations for the EPS 

•  The perturbations are constructed so that all perturbed members are equally likely 

•  All perturbations are flow-dependent: they are different from day to day 
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Model uncertainties – stochastic physics 

•  Parametrization – represent effects of unresolved (or partly resolved) processes on the resolved 
model state 

•  Statistical ensemble of sub-grid scale processes within a grid box; in equilibrium with grid-box 
mean flow 

•  Stochastic physics represents statistical uncertainty 

–  allows for energy transfer from sub-grid scale to resolved flow, non-local effects 
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•  Stochastically Perturbed Parametrization Tendencies 
(SPPT) 

–  Random pattern of perturbation to model fields 

•  Spectral stochastic backscatter scheme (SPBS) 

–  A fraction of the dissipated energy is backscattered 
upscale and acts as streamfunction forcing for the 
resolved-scale flow 
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ECMWF medium-range forecasts 
•  High-resolution forecast (16 km grid, 137 levels) runs twice every day to 10 days 

•  Ensemble: same model but run at lower resolution (32 km, 91 levels; 64 km after day 10) 

–  ensemble control (run from high-resolution analysis, no perturbation) 

–  50 perturbed members (account for initial and model uncertainties) 

–  Ensemble coupled to ocean model from start of forecast 

•  Ensemble extended to 46 days twice per week for monthly forecast (00 Thursday, Monday) 
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ECMWF 
Forecasts 
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ECMWF forecast products 

•  Summarise information in HRES and ENS 

•  Represent uncertainty 

•  Broad-scale evolution out to 15 days 

•  Changes in weather regime 

•  Highlight potential for severe weather few 
days ahead  

•  Monthly and seasonal outlooks 

•  To assist operational forecasters (in Member 
States) 

•  Users generate their own tailored products 
for specific applications 
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Ensemble mean and spread 
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•  The ensemble mean is the average over all 
ensemble members 

•  It will smooth the flow more in areas of large 
uncertainty (spread) 

•  This cannot be achieved with a simple filtering of 
a single forecast 

•  If there is large spread, the ensemble mean can 
be a rather weak pattern and may not represent 
any of the possible states 

•  The ensemble mean should always be used 
together with the spread 

•  The mean may not be the best option for 
parameters with skewed (non-gaussian) 
distributions such as precipitation – consider 
median 

HRES shows lows 

Day 8, green = HRES, black=ENS Mean 
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Ensemble mean and spread 
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•  The ensemble mean is the average over all 
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•  It will smooth the flow more in areas of large 
uncertainty (spread) 

•  This cannot be achieved with a simple filtering of 
a single forecast 
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Clusters – alternative scenarios 

20 EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 

•  Clustering based on 500 hPa geopotential 
forecast fields. Time windows: 3-4 days, 5-7 
days, 8-10 days, 11-15 days. 

•  ENS members in the same cluster display a 
similar synoptic evolution of 500 hPa 
geopotential over the chosen time window 

•  Weather scenarios, defined as ensemble 
member closest to centroid of each cluster 

•  Each scenario is associated to one of 4 pre-
defined large scale climatological regimes, 
indicated by frame colour of each plot  

–  Blocking (red), positive NAO (blue), negative 
NAO (green), Atlantic ridge (violet). 
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Point forecasts: timeseries (meteogram) 
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Point forecasts: timeseries (meteogram) 
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Extra-tropical cyclonic feature tracking 
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Forecast cyclonic 
centres 

HRES, control, ENS 

User can click on any spot (= cyclonic feature) 
to see how that feature evolves in the forecast 
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Extra-tropical cyclonic feature tracking 
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Tropical cyclones 
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Tracks of TCs present at start of forecast 

HRES, control, ENS 

strike probability  
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Tropical cyclones – extended-range forecasts 
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Extreme forecast index (EFI)  
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Measures the distance between the ENS 
cumulative distribution and the model climate 
distribution 

 

Ranges from –1 (all members break climate 
minimum records) to +1 (all beyond model climate 
records) 

 

Indicates places where the ENS distribution is 
towards the extreme of the climate distribution  
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ecCharts 

•  Display HRES and ENS together 

•  Customisation: 

–  Show/hide, add/remove layers 

–  Probability thresholds, percentiles 
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Combined HRES and ENS 
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Weight assigned to HRES?  

equivalent number of ENS 
members  

Bimodal distribution? 

From Mark Rodwell 
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Forecast performance 

•  6 headline scores  
–  HRES and ENS upper-air skill 

–  HRES and ENS precipitation  

–  Severe weather: TC position and EFI for extreme wind 

•  Comparison with reference systems 

•  Comparison with other centres 

•  Evaluation for severe weather 

•  Additional verification and in-depth diagnostics  

•  See ECMWF web site for latest results 

www.ecmwf.int/en/forecasts/quality-our-forecasts 
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Ensemble skill Z500 Europe 
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Day 3: HRES best, 
except for a few days 

Day 5 

Day 7: HRES generaly 
not best in medium 
range 
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Ensemble skill Z500 Europe 
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HRES the best consistent 
single-state forecast  
 
But ENS mean better 
 
On any occasion, some 
members will be better 
after 3 days 
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ENS spread and error 
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850 hPa temperature, Northern 
Hemisphere 
 
ENS spread (dashed),  
RMS error of ensemble-mean 
(full lines),  
and their difference (below) in 
summer.  
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ENS skill compared to other centres 
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Ensemble forecasts – communicating uncertainty 

•  All forecasts have errors 

•  It can be important for the user to know about the uncertainty in a forecast 
–  what else could happen? what is the worst possibility? 

•  This is not a new idea 
–  Forecasters are used to adjusting their forecast with their experience of model errors (flow dependence, 

forecast range dependency) 

–  Inconsistency of the forecasts (in time, from one model to the other) were used as indication of the 
(un-)predictability of scenarios 

•  Ensembles give more information – they provide an explicit, detailed representation of model 
uncertainties, and potential of unusual events 

37 EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS 



October 29, 2014 

Value: the economic or societal worth of forecasts 

•  Forecasts only have value if people use them 
–  make a decision or take an action which would not otherwise have been made 

•  Decisions can be based on deterministic forecasts, but … 
•  Decisions involve assessment of risk 
•  Risk = probability x impact 
•  To make a good decision need to know the probability and the impact (consequence 

to the individual user) 
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Communicating forecast uncertainty information to public 
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Summary - why do we run an ensemble? 

•  The best method we have to produce flow-dependent probabilistic weather forecasts  

•  The ensemble gives a range of future scenarios consistent with our knowledge of the initial state 
and model capability 

–  explicit indication of uncertainty in today’s forecast 

–  Potential of high-impact events 

–  Range of ensemble-based products for different users 

•  Ensembles provide the required input for a range of application models (hydrology, ship routing, 
energy demand), explicitly propagating the atmospheric uncertainty  

•  Read more in the ECMWF products User Guide 

–  www.ecmwf.int/sites/default/files/User_Guide_V1.2_20151123.pdf 
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