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Model Physics 

 

l A few basics 
l High resolution 
l A few problems 
l A few products 
 

http://www.ecmwf.int/en/learning/education-material/introductory-lectures-nwp 
for the Model Section: Peter Bechtold 
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Parameterized processes in the ECMWF model  

from the surface to the stratosphere 
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Precipitation JJA: Sensitivity to Model Formulation 
Seasonal integrations 

Precipitation GPCP (6-8 1990-2005)
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GPCP JJA 1990-2006 

33R1:2008  -GPCP 

33R1(old convection)-33R1 

33R1(old vdiff)-33R1 

33R1(old radiation)-33R1 

33R1(old soil hydrology)-33R1 
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Model Tendencies - Tropics 

For Temperature, above the boundary layer, there is roughly an equilibrium 
Radiation-Convection, but Dynamics and Clouds also important, whereas  
for moisture there is roughly an equilibrium between dynamical transport 
(moistening) and convective drying.      -  Global Budgets are very similar 

All processes are important, nevertheless the driving force for 
atmospheric dynamics and convection is  the radiation 
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The weather and thermal equilibria: exercises       

~0.5 K/100 m 

J/kg 

w ~ -0.5 cm/s 
subsidence 

100 mm/day precipitation heats the atmospheric column by 2867 W/m2 or by 
25 K/day on average. This heating must be compensated by uplifting of  
w ~ 10 cm/s  è heavy precip/convection requires large-scale perturbation. 
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The 2016 horizontal resolution upgrade: 
 
The Grids and effects from improved 
Numerics 
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From Tl1279 (16 km) to TCo1279 (9 km) 
•  Same max number of 

waves on the 
sphere=1279 

•  Less spectral smoothing 
applied to TC1279 
orography than in Tl1279 

•  In the linear=Tl grid 2 
grid-points represent one 
wave, while in the 
cubic=TC grid, a wave is 
represented by 4 grid-
points =>much more 
accurate 

•  note that most 
computations are done in 
grid-point space 

•  The TC  Gaussian grid is 
further reduced to a TC 
octahedral to save grid 
points 
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A new grid …. 
and a more uniform resolution, ~9 km over Europe 

N24 reduced Gaussian grid N24 octahedral Gaussian grid 
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OPER 

CUBIC 

China 

China 

Improvements: …. 
Strong reduction of spurious grid-scale rainfall events (LSP) 

Frequency 
of rain 
events 
>20mm/6h 
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Oper 41r1, 3h precip  High Res 41r2, 3h precip  Satellite IR image 

Tropical Cyclone Soudelor 
Aug 2015 

•  Instability in Numerics due to departure point calculation 
in the semi-Lagrangian advection, leading to unrealistic 
tropical cyclone structures 

Improvements: Numerics 
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Physical processes: Surface temperatures 
wind and snow 
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Land surface model evolution 

R1  >  R2

D1 <               D2

P1             =               P2

σ1              > σ 2

R2

Fine texture Coarse texture

•  Hydrology-TESSEL •  TESSEL •  FLAKE 
 

•  new SNOW 

2000/06                                                                                   2007/11                                        2009/03       2009 & 2010                                      2015
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2015 01 01 at 06UTC 

Additional  
Snow data 

Additional data  from national networks  (7 
countries): 
Sweden (>300), Romania(78), The Netherlands (33), 
Denmark (43), Hungary (61), Norway (183), Switzerland 
(332). 
 
à  Dedicated BUFR (2011)  

(de Rosnay et al. ECMWF Res. Memo, R48.3/PdR/1139, 2011) 

Snow 
Depth (cm) 

Available on the GTS  (Global 
Telecommunication System) 

Snow SYNOP and National Network data 
Snow Observations 

SYNOP 
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Snow analysis uses Synop and Satellite 
Obs 

However, satellite only gives snow cover! 
And the big change in 2014 was the way satellite data is used, i.e 
it is assimilated with large observation error, also if 
FG =no snow, Sat=snow   =>  Sat snow≈5 cm 
 
Fc errors (scores) very sensitive to snow (analysis) 
 
See also ECMWF Newsletter no 143, article pp 26-31, Spring 2015 



Archived prognostic snow related quantities 

l  Snow depth (water equivalent), Sd => actual depth=Sd*(Rl=1000)/Rsn 

    below 10 cm snow depth snow cover becomes fractional 

l  Snow density (typically factor 10 lower than water-> 1 mm precip~1 
cm snow), Rsn  (mixture old/new snow, wind compression) 

l  Snow temperature, Tsn 

l  Snow albedo, Asn Snow	density		

http://www.ecmwf.int/en/forecasts/charts/medium/snow-depth-and-sea-ice 
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Forecast of 2m temperature 
are improved in proximity of 
lakes and coastal areas

Why also coastal areas, 
these are not Lakes ?!...... 
cause before if land-sea 
mask>0.5 then only land 
point……… but doesn’t 
solve T2m coastal problem 
for Norway
 

Impact of water bodies in IFS version June 2015 

Summer	experiment	 

 
LAKE COVER FRACTION 
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T and q interpolation to the 2m level 

l        and       are determined by 
the land surface scheme or by 
SST. 

l  Main purpose of land surface 
scheme is to provide correct 
area averaged fluxes of heat 
and moisture. 

l  Land surface scheme 
considers different sub-areas 
(tiles) but effect on screen 
level variables is not 
accounted for yet.  

level 137  
(10 m) 

2m level 
(diagnostic) 

surface 

91q 91T

sq sT

2q 2T

sq sT
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land mask applied (contour interval 0.5 K, start at +- 0.5 K) 

T2m mean errors (K) 1.Nov 2015- 20.Jan 2016  00  UTC 

But for 1-20 January 2016 
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Temperature negative error reduction in 41r2 
resolution upgrade:  
 
Coastal T-errors reduced through approximate radiation updates in 
space and time 
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Example of night-time positive Temperature errors   
 

EC Fc 20160103 12UTC+12h 

OBS 20160104 00UTC OBS 20160104 00UTC 

Error 

Shepetivka Ukraina 20160104 00 UTC 
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Summary of wintertime 2m T errors 

Overall not bad, mean error < 0.5 K,  improved over 
2010/11 but still 

•   Too warm, particular night-time problem, but 
apparent too cold over orography 

Various possible reasons: coupling (coefficient) with 
ground  heat flux, error in lake temperatures (not 
frozen), stable boundary-layer mixing, low-level clouds, 
snow 

• Overestimation of summertime night temperatures 
(not shown) … to be addressed 2nd half of 2016 
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10 m wind 

woodland grass mountains 
•  Local wind depends strongly on 

local exposure. 
•  ECMWF model has roughness 

length parametrisation to obtain 
realistic “area averaged” surface 
drag.  

•  Resulting wind is low over land 
because rough elements dominate. 

40 m 

10 m 

Post-processing of wind at 10 m 
•  Post-processed 10 m wind interpolates wind 

from 40 m (was 75 m before Nov. 2011) ) 
assuming roughness length for grassland.  

•  Note: this exposure correction is only a partial 
correction to account for local effects (which 
tend to be more complex). 
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Changes to the roughness length table (Nov 2011)  
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Wind Gusts: what is it ? 

WMO definition:   

Gusts are defined as wind extremes observed by anemometer.  A 3 
second running average is applied to the data. The report practice is such 
that gusts are reported as extremes over the previous hour, or the 
previous 3 or 6 hours.  

 

The mean wind  is reported as a 10 min average which is the last 10-
minute interval of the hour; it should be comparable with instant output 
of the model 10 m wind, as it can be interpreted as some space and/or 
time average. 
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Wind Gusts in the IFS 

10 * 850 9257.71 ( / ) 0.6max(0, )
deep convection

gustU U U f z L U U= + + −1 4 4 4 2 4 4 4 3

Gusts are computed by adding a turbulence component and a convective 
component to the mean wind: 

 where U10 is the 10m wind speed (obtained as wind speed at first model 
level, or interpolated down from 40m level), U* is the friction velocity – 
itself obtained from the wind speed at the first model level, and L is a 
stability parameter. 

The convective contribution is set proport. to the wind shear between 
model levels corresponding to  850 hPa and 950hpa, respectively. 
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Convective Gusts 
Motivation: report 
about gust front by 
DWD 
22 February 2008 

Oper 

Conv 
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Wind gusts 18 June 2011  

l  Wind gust forecast for 18 June 15 UTC base 17 June 0 UTC 

l  ECMWF wind gust maxima are located over land, other models have maxima 
over the sea 

l  “It seems really unrealistic” to the Meteo-France chief forecaster 
ECMWF Aladin 
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Wind gusts 18 June 2011  
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Wind gusts 
Time series against anemometer  24 January 2009 (storm Klaus) 

Observed mean wind speed (dashed black line) and maximum wind speed (solid black line) 
for 24 January 2009 at a meteorological station at Toulouse University, France 
(courtesy Jean-Luc Attié and Pierre Durand), together with corresponding 3-hourly 
forecast values (red lines) from the operational deterministic forecast from 23 January 
12 UTC. The blue line denotes the convective contribution to the gusts. 
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Physical processes: Summer and winter 
convection 
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JJA 2011-2012 hourly rainfall 
composite against Radar           
 

See ECMWF Newsletter No 136 Summer 2013 
Bechtold et al., 2014, J. Atmos. Sci. 

Diurnal cycle:  realistic since Nov 2013 
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Diurnal cycle:  Impact on weather forecasts 
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Winter convection: snow showers 

Obs 42r1 TCo1279 

Oper advection 
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Cy42r1 TCo1279 9 km 

Example of (convective) precipitation forecast and resolution 
Oper Cy41r1 Tl1279 16 km Obs 9 Aug 2015 

Cy42r1 TCo1999 5 km scaled Mfl 
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Summary: issues for improvement  

 
l  T2m winter can still be difficult: stable boundary-layer, coupling with 

surface (ground, lakes)  and low-level clouds 
 
l  Still some overestimation of light precipitation  (drizzle)  
 
l  Melting of fresh snow on ground somewhat too slow 
 
l  Inland penetration of (convective) showers and convective organisation 

improved but can still be improved 
 
l  Too strong Indian and SE Asian Summer Monsoon (to be addressed in 

2nd half of 2016 through new aerosol climatology) 
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A few things coming up in 2nd half of 2016 

 
l  New Aerosol climatology -> improved (reduced precipitation) Indian 

summer monsoon 
 
l  Revised Ozone climatology -> improved (cooling > 5K) upper 

stratospheric temperatures 
 
l  New products: Ceiling (m), convective cloud top height (m), height of 0 

and 1 Deg C wet bulb temperature, direct beam surface radiation 
 


