Interpolation

Computer User Training Course 2015

Paul Dando
User Support
advisory@ecmwf.int

Contents

- Introduction
- Overview of Interpolation
- Spectral Transformations
- Grid point Transformations
- Interpolation Options
- Future plans
- Practical

Introduction

- Weather data can have different representations
- Interpolation is how we recalculate data in a different representation
- Interpolation is available in
- MARS
- Operational dissemination
- Metview graphics package

Documentation:
https://software.ecmwf.int/emoslib

Introduction - Interpolation "black box"

Introduction - Interpolation black box (2)

- Input can be a GRIB product or value array
- Output can be a GRIB product or value array
- For GRIB products, characteristics / info read from the GRIB header
- A number of Fortran routines (part of EMOSLIB) perform the interpolation
- MARS calls these for you
- Possible to make calls to these functions yourself
- Example programs on internet pages for EMOSLIB

Spectral Transformations

- Some data (e.g. pressure and model level) is stored in Spectral format
- These fields cannot be plotted directly
- Need to be transformed to grid points

Spectral to grid-point

- Latitude/Longitude
- Regular and Reduced Gaussian
- Automatic truncation based on output grid resolution
- Interpolation coefficient files created (in \$PPDIR)

Spectral to Spectral

- With truncation
- With rotation (very expensive in resources)

Spectral to grid-point: truncation

- Automatic truncation before interpolation reduces resources needed and avoids spurious "aliased" values

Grid increment	Truncation
$2.5 \leq \Delta$	T63
$1.5 \leq \Delta<2.5$	T106
$0.6 \leq \Delta<1.5$	T213
$0.4 \leq \Delta<0.6$	T319
$0.3 \leq \Delta<0.4$	T511
$0.15 \leq \Delta<0.3$	T799
$0.09 \leq \Delta<0.15$	T1279
$0.0 \leq \Delta<0.09$	T2047

- Optionally controlled using truncation option in call to INTOUT
- MARS retrievals can override using resol keyword, e.g. resol=106

Grid-point Transformations

- Allowed combinations

\qquad TO \rightarrow	Regular Lat/Lon	Regular Gaussian	Reduced Gaussian
Regular Lat/Lon			
Regular Gaussian			
Reduced Gaussian			

- NB cannot interpolate to a reduced Gaussian grid from a different representation

Regular Gaussian Grids

- N lines of latitude between pole and equator
- Latitude spacing not regular but is symmetric about equator
- $4 \times \mathrm{N}$ equally spaced points at each latitude
- No latitude points at poles or equator
- Special treatment at poles

Reduced Gaussian Grids

- Lines of latitude same as a regular Gaussian grid
- Fewer longitude points at latitudes close to poles
- Local east-west grid length similar for all latitudes

Interpolation Options

These apply only to Grid-point Interpolation

- Interpolation schemes
- Bilinear
- Nearest-neighbour
- 12-point scheme for rotation
- Treatment of
- land-sea masks
- precipitation
- Geographical sub-areas

Bilinear Interpolation

- Default for all parameters except vegetation and soil type fields and Wave 2D spectra
- Each point of output grid generated from 4 neighbouring points of input grid - approximated as Cartesian coordinates
- Weights applied to the 4 input grid points calculated:
- by performing a linear fit along each line of latitude
- normalising the two partial weights for each point
- performing a linear fit in the north-south direction

Vegetation and soil type fields and Wave 2D spectra use nearest neighbour

Rotation from Gaussian Grids

- Uses a 12-point interpolation scheme

- Old grid point

A New grid point

- Spline fitting can produce non-physical values for some fields, e.g., cloud cover
- Consider using bilinear interpolation for such fields
- i.e. with MARS keyword interpolation = bilinear

Land-Sea Masks

- Land-sea masks represented as values 0 and 1 (or fractional)
- If land-sea mask of neighbouring point differs from grid-point being generated, weight of input point is modified to reduce effect

"Point S_{1} has lower (0.2x) weight in calculation of L_{N} "
- Land-sea masks are applied by default to surface fields (except MSL and LSM and Reduced Gaussian)

Precipitation - an "accumulated field"

- Rules are applied to prevent spreading of 'trace' amounts:
- Interpolated value for precipitation at a point is set to zero if:
- the calculated value is less than a defined threshold
- its neighbour with the highest weight had no precipitation
- Polar values for precipitation are always the average of nearest Gaussian line with no threshold check applied
- For ensembles. accumulated fields can use "double" interpolation
- E.g. Interpolate from N320 to N160 and then to lat-lon

Geographical Sub-areas

- Sub-areas can be created for new fields by specifying lat / Ion boundaries (north / west / south / east)
- Sub-areas are based on the full global grid
- Global regular grids have dateline at 0° West
- Lat/long grids have a line of latitude at the equator
- Gaussian grids are symmetrical about the equator
- Boundaries of sub-areas are expanded outwards towards global grid (for rotations, boundaries are preserved)
- Can change behaviour in MARS by setting the environment variable \$MARS_INTERPOLATION_INWARDS
- Sub-areas not currently supported for reduced Gaussian grids full global grid is produced for these

Geographical sub-areas - an example

- Adjustment of Sub areas
- Original (regular Lat / Lon) grid

Geographical sub-areas - an example

- User requests a subarea
- In this case, their subarea falls between grid points

Geographical sub-areas - an example

- The subarea is widened
- to encompass all points within and around the specified subarea
- e.g. for 1×1 grid, NWSE (10.5, 2.5, -20.3, 84.2) becomes (11, 2, -21, 85)

Interfaces to the interpolation

- Fortran interface
- Low level interface
- Code needs to be complied and linked with Emoslib library
- Special functions for GRIB2 (intf2 \& intuvp2)
https://software.ecmwf.int/emoslib/Field+interpolation+software
- MARS/Metview interface
- Recommended high level interface
- Interpolation during data retrieval from archive
- Options are described in MARS user guide
- Same interface even if underlying interpolation

$$
\begin{aligned}
\begin{array}{l}
\text { retrieve, } \\
\text { type }
\end{array} & =f c, \\
\text { param } & =t, \\
\text { levelist } & =1000 / 500, \\
\text { grid } & =1.5 / 1.5, \\
\text { area } & =75 /-20 / 10 / 60, \\
\text { target } & =\text { "t_ll_eu.grb" }
\end{aligned}
$$ package will change

- This is what we use for the practical exercises...
https://software.ecmwf.int/wiki/display/UDOC/Post-processing+keywords

Interpolation with MARS: the recipe book

To a regular $1.5^{\circ} \times 1.5^{\circ}$ lat-lon grid

To an N320 reduced Gaussian grid

retrieve,	$=\mathrm{fc}$,
type	$=\mathrm{t}$,
param	$=1000 / 500$,
levelist	$=$ reduced,
gaussian	$=320$,
grid	$=3 t$ reduced_gg.grb"

To an N640 regular Gaussian grid

```
retrieve,
type = fc,
param = t,
levelist = 1000/500,
gaussian = regular,
grid = 640,
target = "t_regular_gg.grb"
```

To a subarea of a $0.5^{\circ} \times 0.5^{\circ}$ lat-Ion grid

$$
\begin{aligned}
\begin{array}{l}
\text { retrieve, } \\
\text { type }
\end{array} & =\mathrm{fc}, \\
\text { param } & =\mathrm{t}, \\
\text { levelist } & =1000 / 500, \\
\text { area } & =75 /-20 / 10 / 60, \\
\text { grid } & =0.5 / 0.5, \\
\text { target } & =\text { "t_ll_eu.grb" }
\end{aligned}
$$

Interpolation with MARS: the recipe book

To a subarea of a $0.5^{\circ} \times 0.5^{\circ}$ lat-Ion grid with rotation

```
retrieve,
    type = fc,
    param = t,
    levelist = 1000/500,
    area = 1/-17/-21/8,
    grid = 0.5/0.5,
    rotation = -32.5/10.0,
    target = "t_ll_rotated.grb"
```

To a $0.125^{\circ} \times 0.125^{\circ}$ lat-Ion grid using nearest-neighbour method

```
retrieve,
    type = fc,
    param = t,
    levelist = 1000/500,
    grid = 0.125/0.125,
    interpolation = nearest neig,
    target = "t_ll_nearest.grb
```


Future plans

- EMOSLIB is not easy to maintain
- A new interpolation package is being written in C++
- Improve code, efficiency, maintainability and portability
- The new package will provide a Library and API
- It will be callable from C, C++, Fortran 90, Python
- It will include some Unix-style command line tools
- All current EMOSLIB features will be supported
- Some new features will be added
- Include routines for 'single-point' interpolation
- Handle different grid types
- Parallelisation / multiple-threaded
- Will undergo extensive testing at ECMWF before release

Practical: Interpolation with MARS

- Work in your \$SCRATCH
- Copy the scripts from ~trx/maf/scripts

```
cd $SCRATCH
```

cp /home/ectrain/trx/Paul/Interpolation/interp*.ksh ./

- First, run interp1.ksh:
./interp1.ksh
This will retrieve some data from MARS to a file out1.grib
- Next run the other scripts in turn. Each will create a new file called out2.grib, ... , out7.grib
- Inspect each output file with grib_Is and grib_dump
- Note how the grid description in Section 2 of the header differs
- Look at the MARS requests that create each of the files

