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1 Executive Summary
The algorithms underlying numerical weather prediction (NWP) and climate models
that have been developed in the past few decades face an increasing challenge caused
by the paradigm shift imposed by hardware vendors towards more energy-efficient
devices. This is because the Dennard scaling (constant power consumption with
increasing transistor density) has ended for traditional CPU cores. Rather than
increasing clock speeds of the chips, performance is increased by adding more chips,
and increasing parallelism. In order to provide a sustainable path to exascale High
Performance Computing (HPC), applications become increasingly restricted by
energy consumption. As a result, the emerging diverse and complex hardware
solutions have a large impact on the programming models traditionally used in
NWP software, triggering a rethink of design choices for future massively parallel
software frameworks. In this deliverable report, we present Atlas, a new software
library that is currently being developed at the European Centre for Medium-Range
Weather Forecasts (ECMWF), with the scope of handling data structures required
for NWP applications in a flexible and massively parallel way. Atlas provides
a versatile framework for the future development of efficient NWP and climate
applications on emerging HPC architectures. The applications range from full
Earth system models, to specific tools required for post-processing weather forecast
products. The Atlas library thus constitutes a step towards affordable exascale
high-performance simulations by providing the necessary abstractions that facilitate
the application in heterogeneous HPC environments by promoting the co-design of
NWP algorithms with the underlying hardware.

Atlas provides data structures for building various numerical strategies to solve
equations on the sphere or limited area’s on the sphere. These data structures
may contain a distribution of points (grid) and, possibly, a composition of elements
(mesh), required to implement the numerical operations required. Atlas can also
represent a given field within a specific spatial projection. Atlas is capable of
mapping fields between different grids as part of pre- and post-processing stages or
as part of coupling processes whose respective fields are discretised on different grids
or meshes. The latter is particularly relevant for the physical parametrisations,
where some physical processes such as radiation may be represented on a coarser
grid or mesh and may need to be projected onto a finer grid or mesh.

The key concepts in the design of the Atlas data structure are:

• Grid: ordered list of points (coordinates) without connectivity rules;

• Mesh: collection of elements linking the grid points by specific connectivity
rules;
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• Field: array of discrete values representing a given quantity;

• FunctionSpace: discretisation space in which a field is defined.

These concepts are depicted in Figure 1, where we used the sphere to represent a
global grid, mesh and field. A grid is merely a predefined list of two-dimensional
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Figure 1: The conceptual design of Atlas.

points, typically structured and using two indices i and j so that point coordinates
and computational stencils (for e.g. derivatives) are easily retrieved without connec-
tivity rules. For models using a structured grid point approach a grid is enough to
define fields with appropriate indexing mechanisms. For element-based numerical
methods (generally unstructured) however, the mesh concept is introduced that
describes connectivity lists linking elements, edges and nodes.

A mesh may be decomposed in partitions and distributed among MPI tasks. Every
MPI task then allows computations on one such partition. Overlap regions (or
halo’s) between partitions can be constructed to enable stencil operations in a
parallel context.

In addition to these two features, it is necessary to introduce the concept of field,
intended as a container of values of a given variable. A field can be discretised in
various ways. The concept responsible to interpret/provide the discretisation of a
field in terms of spatial projection (e.g. grid-points, mesh-nodes, mesh-cell-centres)
or spectral coefficients is the function space. The function space also implements
parallel communication operations responsible for performing synchronisation of
fields across overlap regions, which we refer to as halo-exchange hereafter.
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A possible Atlas workflow consisting of the creation and discretisation of a field, is
illustrated in Figure 2, where we also emphasise some additional characteristics
of each step. The building blocks illustrated in Figure 2 can then be used to

MeshGenerator FunctionSpaceMesh Fields

- Memory layout
- Parallelisation
- Hardware

Grid

- Distributed
- Unstructured
- Halo

- Parallel- Point locations
     and ordering

- Memory
- Metadata

Figure 2: Workflow of Atlas starting from Grid to the creation of a Field, discretised
on a Mesh and managed by a FunctionSpace.

implement additional operations required for specific applications. Atlas supplies
certain mathematical operations as ready solutions to be plugged in to user software.
These operations vary from the computation of gradient, divergence, curl and
laplacian operations to remapping or interpolation of fields defined on different
grids.
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2 Introduction

2.1 Background

ESCAPE stands for Energy-efficient Scalable Algorithms for Weather Prediction
at Exascale. The project will develop world-class, extreme-scale computing capa-
bilities for European operational numerical weather prediction and future climate
models. ESCAPE addresses the ETP4HPC Strategic Research Agenda ‘Energy and
resiliency’ priority topic, developing a holistic understanding of energy-efficiency
for extreme-scale applications using heterogeneous architectures, accelerators and
special compute units by:

• Defining and encapsulating the fundamental algorithmic building blocks
underlying weather and climate computing;

• Combining cutting-edge research on algorithm development for use in extreme-
scale, high-performance computing applications, minimising time- and cost-
to-solution;

• Synthesising the complementary skills of leading weather forecasting consortia,
university research, high-performance computing centres, and innovative
hardware companies.

ESCAPE is funded by the European Commission’s Horizon 2020 funding framework
under the Future and Emerging Technologies - High-Performance Computing call
for research and innovation actions issued in 2014.

2.2 Scope of this deliverable

2.2.1 Objectives of this deliverable

The Atlas library is a software library being developed at ECMWF in the context
of its Scalability Programme. As such, at the initiation of ESCAPE, the library
was already in a functional state to support the development of the existing dwarfs
(see Deliverable D1.1 [1]). It was however still in an early development stage.

This deliverable aims at providing an established first official and documented
release of the Atlas library. This release is intended only to be used by ESCAPE
partners, with the aim to provide a new stable version of the Atlas library to
improve ESCAPE Weather and Climate Dwarfs (see Deliverable D1.1 [1], and
develop new dwarfs (see Deliverable D1.2 [2]).
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Most available dwarfs delivered in Deliverable D1.2 embody algorithms defined
using domains that span the entire globe. ESCAPE however requires application
of these dwarfs to non-global or regional domains. The delivered Atlas release
therefore also includes new capabilities to accomodate algorithms on regional grids,
which have been established in Deliverable D4.4 [3].

Further ESCAPE developments also include the application of a Domain Specific
Language (DSL) to several dwarfs. The DSL can have different backends, each
capable of executing to execute algorithms on different HPC hardware architectures
(CPU, GPU, MIC). Especially GPU architectures are very different in nature and
algorithms may require copying data back and forth from a host architecture (CPU)
to a device (GPU) where computations on the data are performed (see Deliverable
D2.4 [4]). The delivered Atlas release therefore also includes a new advanced
data-storage facility that accomodates host-device synchronisation capabilities with
different backends. In practice the GPU backend is currently implemented only for
GPU’s programmable with the CUDA language (NVIDIA) [5].

2.2.2 Work performed on this deliverable

As suggested in Section 2.2.1, the Atlas library was in an early development stage
at ESCAPE’s initiation. The majority of the work performed during between
ESCAPE’s initiation and the delivery date has been to design and implement new
capabilities as well as redesign and reimplement existing capabilities to accomo-
date new or evolving requirements. Existing capabilities have been redesigned
to make the library easier to use. Other capabilities have been removed and
were implemented instead in other more general support libraries eckit, fckit (see
Section 3).

As part of this deliverable, the library Atlas has been made to succesfully compile
using compiler suites GNU, Intel, Cray and PGI. More specifically, compiling
the modern Fortran 2008 interfaces using the PGI compiler suite proved to be
not straightforward due to existing compiler bugs. Workarounds in Atlas were
implemented that allowed PGI’s Fortran compiler to compile all of Atlas capabilities
succesfully. The compiler bugs have been reported to PGI and will be fixed in the
upcoming PGI release. Contacts through ESCAPE partner NVIDIA have sped up
this process significantly.

ECMWF and ESCAPE partner MeteoSwiss have collaborated to devise a strategy
to accomodate the use of Atlas as a storage backend for unstructured meshes in
the GridTools DSL developed at MeteoSwiss, which will be required for ESCAPE
deliverable D2.4 [4]. The GridTools library[6] provides a domain specific language
(DSL) that allows to write numerical operators generated from discretisations
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in a performance portable way, abstracting details of the implementation and
optimizations specific to hardware architecture. The ESCAPE deliverable D2.4 will
extent the DSL to support unstructured meshes. In order to enable the use of the
Atlas unstructured meshes by the DSL, the Atlas data structures have been extended
to support GPU accelerators. To further enhance the interoperability between Atlas
and the DSL, the GPU support has been implemented using the GridTools storages
framework. Additionally the work performed to support Atlas unstructured meshes
on GPUs allows to port Fortran dwarfs to GPU using OpenACC.

At the onset of the ESCAPE project, Atlas supported mesh generation capabilities
for global grids covering the sphere. However as Atlas is targeted to be used also
in regional NWP models, these capabilites required to be extended for regional
grids. This work was mainly done in ESCAPE deliverable D4.4 [3]. Further work
on this subject during this deliverable involved consolidating the work performed
in deliverable D4.4 and redesigning further features that this major work required.

2.2.3 Deviations and counter measures

Even though Atlas now fully supports mesh generation for regional grids as required
by the majority of limited-area models, there is more work that can be done to
support other aspects in Atlas such as mathematical operators (gradient, divergence,
curl) taking into account the used projections of a regional grid. Although this
work is ongoing during the course of the ESCAPE project, it is not foreseen as
a critical requirement at this moment to develop algorithms relying on Atlas for
limited area modelling purposes.

With this deliverable, Atlas has been made accelerator aware in terms of data
structure. It was envisioned to support also parallel communication operations
between accelerators (e.g. GPU’s), effectively bypassing the host (CPU). An example
would be the support of halo-exchanges between mesh partitions. This support
can be seen as an optimisation rather than an obstacle in the development of
accelerator aware algorithms relying on Atlas. It is therefore not critical for this
deliverable.

A new stable Atlas release will be delivered for ESCAPE at the end of 2017, which
will address these issues. To keep track of the remaining work, it has been added as
JIRA tasks in the ESCAPE software collaboration platform [7]. ESCAPE partners
will be kept up to date as new features become available in the mean time. This
strategy has shown to work effectively over the course of ESCAPE so far.
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3 Getting started with Atlas
This section is intended to be a general introduction on how to download, install
and run Atlas. In particular, in section 3.1 we will present the general system
requirements before building the library. Section section 3.2 details how to download
Atlas and its internal dependencies. In section 3.3 we will first describe how to
install the internal dependencies required by Atlas (if supported by ECMWF) and
successively we will outline how to install Atlas. Section section 3.4 then explains
how to check the installation. Finally, in section 3.5 we show how to incorporate
Atlas in your own software by creating a simple example that initialises and finalises
the library.

3.1 System requirements

The system requirements for Atlas can be summarised as follows:

• POSIX: The operating system must be POSIX compliant. Currently this
limits the use to UNIX, Linux, and MacOSX operating systems.

• C++ 11, Fortran 2008 (optional) : Atlas uses the programming languages
C++ and optionally Fortran. The required standards for these languages are
respectively C++ 11 and Fortran 2008.

• OpenMP for C++ (optional): In order for Atlas to optionally be able to
take advantage of OpenMP multi-threading, the C++ compiler is required to
support OpenMP version 3.

• MPI for C (optional): To use Atlas in a distributed memory application, the
system needs to have the MPI libraries for the C-language available.

• Git: Required for project management and to download Atlas. For use and
installation see https://git-scm.com/

• CMake: The compilation or build system of Atlas is based on CMake 3.3 or
higher, which is required to be present on the system. For use and installation
see http://www.cmake.org/ .

• Python: Required for certain components of the build system. For use and
installation see https://www.python.org/. (Known to work with version
2.7.12)

• Boost (optional): The Atlas installation process can optionally compile
unit-tests to check if Atlas is correctly installed. To compile these optional
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unit-tests, the Boost C++ library is required to be present on the system.
For use and installation see http://www.boost.org/. (Known to work with
boost 1.61.0)

• CUDA (optional): Atlas can also optionally make use of the GridTools
storage layer to support use on accelerator hardware. A requirement here
is also the Boost C++ library. When intended for a GPU accelerator, an
additional requirement is also that CUDA 6.0 or greater be installed on the
system.

• FFTW (optional): Atlas can optionally perform spectral transform opera-
tions, which in the most general case require that FFTW be present on the
system.

3.2 Downloading Atlas

Apart from the system requirements outlined in section 3.1, Atlas has a number of
internal dependencies that are not all publicly available or require modifications
for ESCAPE:

• ecbuild: It implements some CMake macros that are useful for configuring
and compiling Atlas and the other internal dependencies required by Atlas.
For further information, please visit: https://software.ecmwf.int/wiki/
display/ECBUILD/ecBuild.

• eckit: It implements some useful C++ functionalities widely used in ECMWF
C++ projects. For further information, please visit: https://software.
ecmwf.int/wiki/display/ECKIT/ecKit

• fckit (optional): It implements some useful Fortran functionalities.

• trans, transi (optional): The trans library implements spectral transform
methods (in Fortran), and transi exposes these methods to be used in C/C++.

• gridtools_storage (optional): It implements accelerator-aware data struc-
tures.

Atlas and the listed internal dependencies are distributed as Git repositories and
are available at ECMWF’s Bitbucket git hosting service for ESCAPE: https:
//software.ecmwf.int/stash/projects/ESCAPE. The versions for Atlas and its
internal dependencies are released for this deliverable and tagged in their respective
Git repositories with the Git tag “escape/D1.3”. Access to this service is currently
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restricted to ESCAPE partners only. A public access version is to be released
with ESCAPE deliverable D2.3 (31 December 2017), including all its dependencies,
excluding the optional trans and transi project.

To download Atlas and its internal dependencies, following instructions are to be
used on the command line:

export ESCAPE=https://software.ecmwf.int/stash/scm/escape
export SRC=$(pwd)/source
mkdir -p ${SRC}
cd ${SRC}
git clone -b escape/D1.3 ${ESCAPE}/ecbuild
git clone -b escape/D1.3 ${ESCAPE}/eckit
git clone -b escape/D1.3 ${ESCAPE}/fckit
git clone -b escape/D1.3 ${ESCAPE}/trans
git clone -b escape/D1.3 ${ESCAPE}/transi
git clone -b escape/D1.3 ${ESCAPE}/gridtools_storage
git clone -b escape/D1.3 ${ESCAPE}/atlas

3.3 Compilation and Installation of Atlas

In the following we will outline how to build and install Atlas and each of the
projects Atlas depends on that are not covered by the system requirements. The
first step is to create a folder where to build and install each project, and to
choose a compilation optimisation level. The following three optimisation levels
are recommended:

• DEBUG : No optimisation - used for debugging or development purposes only.
This option may enable additional bounds checking.
• BIT : Maximum optimisation while remaining bit-reproducible.
• RELEASE : Maximum optimisation. For some algorithms and using some

compilers, too agressive optimisation can lead to wrong results.

export BUILD=$(pwd)/build
export INSTALL=$(pwd)/install
export BUILD_TYPE=BIT
export PATH=${PATH}:${SRC}/ecbuild/bin

mkdir -p ${BUILD}/eckit; cd ${BUILD}/eckit
ecbuild --build=${BUILD_TYPE} --prefix=${INSTALL}/eckit -- ${SRC}/eckit
make -j8 install

9
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mkdir -p ${BUILD}/fckit; cd ${BUILD}/fckit
ecbuild --build=${BUILD_TYPE} --prefix=${INSTALL}/fckit -- \

-DFCKIT_PATH=${INSTALL}/fckit \
${SRC}/fckit

make -j8 install

mkdir -p ${BUILD}/trans; cd ${BUILD}/trans
ecbuild --build=${BUILD_TYPE} --prefix=${INSTALL}/trans -- \

${SRC}/trans
make -j8 install

mkdir -p ${BUILD}/transi; cd ${BUILD}/transi
ecbuild --build=${BUILD_TYPE} --prefix=${INSTALL}/transi -- \

-DENABLE_ESCAPE=ON \
-DTRANS_PATH=${INSTALL}/trans \
${SRC}/fckit

make -j8 install

mkdir -p ${BUILD}/gridtools_storage; cd ${BUILD}/gridtools_storage
ecbuild --prefix=${INSTALL}/gridtools_storage -- \

${SRC}/gridtools_storage
make -j8 install

mkdir -p ${BUILD}/atlas; cd ${BUILD}/atlas
ecbuild --build=${BUILD_TYPE} --prefix=${INSTALL}/atlas -- \

-DECKIT_PATH=${INSTALL}/eckit \
-DFCKIT_PATH=${INSTALL}/fckit \
-DTRANSI_PATH=${INSTALL}/transi \
-DGRIDTOOLS_STORAGE_PATH=${INSTALL}/gridtools_storage \
${SRC}/atlas

The following extra flags may be added to Atlas configuration step to fine-tune
features

• -DENABLE_OMP=OFF — Enable/Disable OpenMP
• -DENABLE_FORTRAN=OFF — Disable Compilation of Fortran bindings
• -DENABLE_TRANS=OFF — Disable compilation of the spectral transforms

functionality. This is automatically disabled if the optional transi dependency
is not compiled or found. In this case it is also unnecessary to provide
-DTRANSI_PATH=$INSTALL/transi .

• -DENABLE_GRIDTOOLS_STORAGE=OFF — Disable gridtools_storage, and en-
able instead an internal data-storage solution.

10
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• -DENABLE_GPU=ON — Enable GPU backend for gridtools_storage.

• -DENABLE_BOUNDSCHECKING=ON —Enable boundschecking in C++ code when
indexing arrays. By default BOUNDSCHECKING is ON when the build-type
is DEBUG, otherwise the default is OFF.

Note
By default compilation is done using shared libraries. Some systems
have linking problems with static libraries that have not been com-
piled with the flag -fPIC . In this case, also compile Atlas using
static linking, by adding to the ecbuild step for each project the flag:
--static

Note
The build system for the entire software stack presented above is based
on ecbuild which facilitates portability across multiple platforms.
However some platforms (like ECMWF’s HPC) may have a non-
standard configuration (in terms of CMake). For these cases ecbuild
has a toolchain option, which allows you to provide a custom set of
rules for a specific platform. The reader is referred to the ecbuild
documentation, and the ecbuild “help” : ecbuild --help

The building and installation of Atlas should now be complete and you can start
using it. With this purpose, in the next section we show a simple example on how
to create a simple program to initialise and finalise the library.

3.4 Inspecting your Atlas installation

Once installation of Atlas is complete, an executable called “atlas” can be found in
${INSTALL}/bin/atlas . Example use is listed:

>>> ${INSTALL}/bin/atlas --version
0.10.0

>>> ${INSTALL}/bin/atlas --git
escape/D1.3

>>> ${INSTALL}/bin/atlas --info
atlas version (0.10.0), git (escape/D1.3)

11
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Build:
build type : Release
timestamp : 20160215122606
op. system : Darwin-14.5.0 (macosx.64)
processor : x86_64
c compiler : Clang 7.0.2.7000181

flags : -O3 -DNDEBUG
c++ compiler : Clang 7.0.2.7000181

flags : -O3 -DNDEBUG
fortran compiler: GNU 5.2.0

flags : -fno-openmp -O3 -funroll-all-loops -finline-functions

Features:
Fortran : ON
MPI : ON
OpenMP : OFF
BoundsChecking : OFF
ArrayDataStore : GridTools
GPU : OFF
Trans : ON
Tesselation : ON
gidx_t : 64 bit integer

Dependencies:
eckit version (0.12.3), git (escape/D1.3)
fckit version (0.3.1), git (escape/D1.3)
transi version (0.3.2), git (escape/D1.3)

This executable gives you information respectively on the version, a more detailed
git-version-controlled identifier, and finally a more complete view on all the features
that Atlas has been compiled with, as well as compiler and compile flag information.
Also printed are the versions of used dependencies such as eckit and transi.

3.5 Using Atlas in your project

In this section, we provide a simple example on how to link Atlas in your own
software. We will show a simple “Hello world” program that initialises and finalises
the library, and uses the internal Atlas logging facilities to print “Hello world!”.

Note that Atlas supports both C++ and Fortran. Therefore, we will show equivalent
examples using both C++ and Fortran.

12
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1 // file: hello -world.cc
2
3 # include "atlas/ library / Library .h"
4 # include "atlas/ runtime /Log.h"
5
6 int main(int argc , char ** argv)
7 {
8 atlas :: Library :: instance (). initialise (argc , argv);
9 atlas :: Log :: info () << "Hello world!" << std :: endl;

10 atlas :: Library :: instance (). finalise ();
11
12 return 0;
13 }

Listing 1: Using Atlas in a C++ project

1 ! file: hello -world.F90
2
3 program hello_world
4
5 use atlas_module , only : atlas_library , atlas_log
6
7 call atlas_library % initialise ()
8 call atlas_log %info("Hello world!")
9 call atlas_library % finalise ()

10
11 end program

Listing 2: Using Atlas in a Fortran project

First, the Atlas library is initialised. In C++ this function requires two arguments
argc and argv from the command-line. In Fortran these arguments are automati-
cally provided by the Fortran runtime environment. This function is used to set up
the logging facility and for the initialisation of MPI (Message Passage Interface).

Following initialisation, we log “Hello world!” to the info channel. Atlas provides
4 different log channels which can be configured separately: debug , info , warning ,
and error . By default all log channels print to the std::cout stream, and the
debug channel can be switched on or off by setting the environment variable
ATLAS_DEBUG=1 or ATLAS_DEBUG=0 . Not specifying ATLAS_DEBUG is treated as
ATLAS_DEBUG=0 . Finally we end the program after finalising the Atlas library.
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Note
The logging facility exposed by Atlas is implemented by eckit. The
Fortran interface is using fckit, which also delegates its implementation
to eckit. For this reason, logging through C++ or Fortran shares the
same infrastructure, which ensures that the logging is consistent in
mixed C++/Fortran codes.

Standard code compilation

Compiling the C++ example with the GNU C++ compiler:

g++ hello-world.cc -o hello-world \
$(pkg-config ${INSTALL}/atlas/lib/pkgconfig/atlas.pc --libs --cflags)

Compiling the Fortran example with the GNU Fortran compiler:

gfortran hello-world.F90 -o hello-world \
$(pkg-config ${INSTALL}/atlas/lib/pkgconfig/atlas.pc --libs --cflags)

We can now run the executable:

>>> ./hello-world
Hello world!

We can run the same executable with debug output printed during Atlas initialisa-
tion:

>>> ATLAS_DEBUG=1 ./hello-world

The output now shows in addition to Hello world! also some information such
as the version of Atlas we are running, the identifier of the commit and the path of
the executable, similarly to the output of atlas --info in Section 3.4.

Code compilation using ecbuild

As Atlas is a ecbuild (CMake) project, it integrates easily in other ecbuild (CMake)
projects. Two sample ecbuild projects are shown here that compile the “hello-world”
example code, for respectively the C++ and the Fortran version.
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An example C++ ecbuild project would look like this:
1 # File: CMakeLists.txt
2 cmake_minimum_required(VERSION 3.3.2 FATAL_ERROR)
3 project(hello_world CXX)
4
5 include(ecbuild_system NO_POLICY_SCOPE)
6 ecbuild_requires_macro_version(2.6)
7 ecbuild_declare_project()
8 ecbuild_use_package(PROJECT atlas REQUIRED)
9 ecbuild_add_executable(TARGET hello-world

10 SOURCES hello-world.cc
11 INCLUDES ${ATLAS_INCLUDE_DIRS}
12 LIBS atlas)
13 ecbuild_print_summary()

An example Fortran ecbuild project would look like this:
1 # File: CMakeLists.txt
2 cmake_minimum_required(VERSION 2.8.4 FATAL_ERROR)
3 project(hello_world Fortran)
4
5 include(ecbuild_system NO_POLICY_SCOPE)
6 ecbuild_requires_macro_version(1.9)
7 ecbuild_declare_project()
8 ecbuild_enable_fortran(MODULE_DIRECTORY ${CMAKE_BINARY_DIR}/module
9 REQUIRED)

10 ecbuild_use_package(PROJECT atlas REQUIRED)
11 ecbuild_add_executable(TARGET hello-world
12 SOURCES hello-world.F90
13 INCLUDES ${ATLAS_INCLUDE_DIRS}
14 ${CMAKE_CURRENT_BINARY_DIR}
15 LIBS atlas_f)
16 ecbuild_print_summary()

To compile the ecbuild project, you have to first create an out-of-source build
directory, and point ecbuild to the directory where the CMakeLists.txt is located.

mkdir -p build; cd build
ecbuild -DATLAS_PATH=${INSTALL}/atlas ../
make

Note that in the above command we needed to provide the path to the Atlas
library installation. Alternatively, ATLAS_PATH may be defined as an environment
variable. This completes the compilation of our first example that uses Atlas and
generates an executable into the bin folder (automatically generated by CMake)
inside our builds directory. For more information on using ecbuild, or CMake, see
https://software.ecmwf.int/wiki/display/ECBUILD/ecBuild.

This completes your first project that uses the Atlas library.
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4 Atlas design and implementation
This section discusses the design of the most important Atlas concepts, and to a
certain level their implementation details. Implementation details are aided by
diagrams formulated in the Unified Modelling Language (UML) [8].

4.1 Programming languages

Atlas is primarily written in the C++ programming language. The C++ programming
language facilitates OO design, and is high performance computing capable. The
latter is due to the support C++ brings for hardware specific instructions. In
addition, the high compatibility of C++ with C allows Atlas to make use of specific
programming models such as CUDA to support GPU’s, and facilitates the creation
of C-Fortran bindings to create generic Fortran interfaces.

With much of the NWP operational software written in Fortran, significant effort in
the Atlas design has been devoted to having a Fortran OO Application Programming
Interface (API) wrapping the C++ concepts as closely as possible.

The Fortran API mirrors the C++ classes with a Fortran derived type, whose only
data member is a raw pointer to an instance of the matching C++ class. The
Fortran derived type also contains member functions or subroutines that delegate
its implementation to matching member functions of the C++ class instance. Since
Fortran does not directly interoperate with C++, C interfaces to the C++ class
member functions are created first, and it is these interfaces that the Fortran
derived type delegates to. The whole interaction procedure is schematically shown
in Figure 3. The overhead created by delegating function calls from the Fortran API

public:
   method()
private:
   data

C++ Object

C interface Fortran-C bindings

public:
   method()
private:
   C_PTR object

Fortran Object

Figure 3: Procedure how the Fortran interface to the C++ design is constructed.
When a method in the Fortran object is called, it will actually be executed by the
instance of its matching C++ class, through a C interface.

to a C++ implementation can be disregarded if performed outside of a computational
loop. Atlas is primarily used to manage the data structure in a OO manner, and the
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actual field data should be accessed from the data structure before a computational
loop starts.

4.2 Grid

In the NWP and climate modelling community (as opposed to, for instance, the
engineering community) the grid is often a fixed property for a model. One of Atlas’
goals is to provide a catalogue of a variety of global and regional grids defined by
the World Meteorological Organisation in order to support multiple models and
model inter-comparison initiatives.

There exist three main categories of grids in terms of functionality that Atlas can
currently represent: unstructured grids, regular grids, and reduced grids.

Unstructured grids describe an arbitrary number of points in no particular
order. The x- and y-coordinates of the points cannot be computed with certain
mathematical formulations, and thus have to be specified individually for each
point (e.g. Figure 4a).

Regular grids on the other hand make the assumption that points are aligned
in both x- and y-direction (e.g. Figure 4c). Grid point coordinates can then be
derived by two independent indices (i,j) associated to the x- and y- direction,
respectively.

For reduced grids, lines of constant y or so called parallels may however have
a different amount of gridpoints along the x-direction (Figure 4b and Figure 4d).
Reduced grids are a common type of grid employed in global weather and climate
models to reduce the number of points towards the poles in order to achieve a
quasi-uniform resolution on the sphere.

For both regular and reduced grids, no assumptions are made on the spacing
between the parallels in the y direction. The points in x-direction on every parallel
are assumed to be equispaced.

Atlas provides grid construction facilities based on a configuration object of the
type Config to create global grids or regional grids. For most global grids, this
configuration object can also be inferred from a simple string identifier or name
containing one or more numbers representing the grid resolution. Commonly used
global grids that can currently be accessed through such name are:

• regular longitude-latitude grid (name: L<NLON>x<NLAT> or L<N>);

• shifted longitude-latitude grid (name: S<NLON>x<NLAT> or S<N>);

• regular Gaussian grid (name: F<N>);

• classic reduced Gaussian grid (name: N<N>);
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• octahedral reduced Gaussian grid (name: O<N>).

In the identifiers shown in this list, <NLON> stands for the number of longitudes,
<NLAT> for the number of latitudes, and <N> for the number of parallels between
the North Pole and equator (interval [90◦,0◦) ). These grids will be explained in
more detail following sections.

Figure 4 showcases 4 example grids that can be created or used with Atlas.

(a) unstructured (b) classic Gaussian, N16

(c) regular lon-lat, L16 (d) octahedral Gaussian, O16

Figure 4: Four examples of global grids in geographical coordinates with approxi-
mately similar resolution in the equatorial region.

4.2.1 Projection

In order to support regional grids for the Limited Area Modelling (LAM) community,
projections are often needed that transform so called grid coordinates (x,y) to
geographic coordinates (longitude,latitude). For regional grids, the grid coordinates
are often defined in meters on a regular grid, as is the case for e.g. a Lambert
conformal conic projection and a Mercator projection. Another example projection
that is also applicable to a global grid is the Schmidt projection.

In Atlas, the projection is embodied by a Projection class, illustrated in Figure 5.
It wraps an abstract polymorphic ProjectionImplementation class with currently 6
concrete implementations:

• LonLat ( type: “lonlat”, units: “degrees”, identity )
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• RotatedLonLat ( type: “rotated_lonlat”, units: “degrees” )

• Schmidt ( type: “schmidt”, units: “degrees” )

• RotatedSchmidt ( type: “rotated_schmidt”, units: “degrees” )

• Mercator ( type: “mercator”, units: “meters”, regional )

• RotatedMercator ( type: “rotated_mercator”, units: “meters”, regional )

• Lambert ( type: “lambert”, units: “meters”, regional )

The Projection furthermore exposes functions to convert xy coordinates to lonlat
coordinates and its inverse. For more information about each concrete projection

+ identity() : Boolean

+ lonlat( xy : PointXY ) : PointLonLat
+ xy( lonlat : PointLonLat ) : PointXY
+ xy2lonlat( inout point : Real[2] )
+ lonlat2xy( inout point : Real[2] )

+ type()     : String
+ units()    : String
+ regional() : Boolean

<<constructor>>    Projection( configuration : Config )
- implementation : ProjectionImplementation

Projection
1*

Projection
Implementation

RotatedLonLatLonLat

Schmidt RotatedSchmidt

Mercator RotatedMercator

Only LonLat
projection is equivalent to 
identity or no projection.

Only Lambert and 
Mercator projections are 
regional and have units in 
"meters"

Lambert

Figure 5: UML class diagram for the Projection class

implementation, refer to ESCAPE deliverable report D4.4 [3].

4.2.2 Domain

In this section, the Domain class is introduced (Figure 6). Its purpose is only
useful for non-global grids, and can be used to detect if any coordinate (x,y) is
contained within the domain that envelops the grid. The design follows the same
principle as the Projection: the Domain class wraps an abstract polymorphic
DomainImplementation class with currently 3 concrete implementations:

• Rectangular ( type: “rectangular” )

• ZonalBand ( type: “zonal_band”, units: “degrees” )
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• Global ( type: “global”, units: “degrees” )

+ contains( xy : PointXY )       : Boolean
+ contains( xy : Real[2] )       : Boolean
+ contains( x : Real, y : Real ) : Boolean

+ type()  : String
+ units() : String

<<constructor>>    Domain( configuration : Config )
- implementation : DomainImplementation

Domain
1*

Domain
Implementation

Rectangular ZonalBand

Global

Figure 6: UML class diagram for the Domain class

Note
The domain has no knowledge of any grid projection. Therefore the
points that can be tested to be contained inside the domain must
be provided in “grid coordinates” (x,y), and not in geographical
coordinates (lon,lat).

The Rectangular domain defines a rectangular region defined by 4 values: xmin,
xmax, ymin, ymax. These values must be defined in units that correspond to the used
grid projection. The ZonalBand domain assumes that the units of x and y are
in degrees, and that the domain is periodic in the x-direction. Therefore, to test
if a point is contained within this domain only requires to check if the point’s y
coordinate lies in the interval [ymin, ymax]. The Global domain, like the ZonalBand
domain assumes units in degrees, and always evaluates that any point is contained
within.

4.2.3 Supported Grid types

Atlas provides a basic Grid class that can embody any unstructured, regular or
reduced grid. The Grid class is a wrapper to an abstract polymorphic GridIm-
plementation class with 2 concrete implementations: Unstructured and Structured.
The Unstructured implementation holds a list of (x,y) coordinates (one pair for
each grid point). The Structured implementation follows the assumption of a
reduced grid. It holds a list of y-coordinates (one value for each grid parallel), a
list of number of points for each parallel, and a list of x-intervals (one pair for each
parallel) in which the points for the parallel are uniformly distributed. With the
Structured implementation, both reduced and regular grids can be represented, as
regular grids can also be interpreted as a special case of a reduced grid (where
every parallel contains the same number of points).
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Following code snippets shows how to construct any grid from either a configuration
object or a name, both in C++ and Fortran.

Config F16_config ;
F16_config .set( "type", " regular_gaussian " );
F16_config .set( "N", 16 );
Grid F16( grid_config ); // regular Gaussian grid (F16)
Grid N16( "N16" ); // classic reduced Gaussian (N16)

Listing 3: Construction of grids, C++ example.

type( atlas_Grid ) :: F16 , N16
type( atlas_Config ) :: F16_config
F16_config = atlas_Config ()
call F16_config %set( "type", " regular_gaussian " )
call F16_config %set( "N", 16 )
F16 = atlas_Grid ( F16_config ) ! regular Gaussian grid (F16)
N16 = atlas_Grid ( "N16" ) ! classic reduced Gaussian grid (N16)

Listing 4: Construction of grids, Fortran example

Note
Even though the configuration object ( F16_config ) is here constructed
programatically, it may also be imported through a JSON string or
file. The regular Gaussian grid could also be constructed through a
name “F16”. Similarly the classic reduced Gaussian grid could also be
constructed through a config object with the type “classic_gaussian”.

Figure 7 illustrates the Grid class implementation. It shows that the Grid class
can return instances of the Domain class and the Projection class.

1*

+ valid()      : Boolean = true

+ size()       : Integer
+ begin()      : Iterator
+ end()        : Iterator

+ name()       : String
+ uid()        : String
+ domain()     : Domain
+ projection() : Projection

# implementation : GridImplementation
+ <<constructor>>  Grid( name : String )
+ <<constructor>>  Grid( configuration : Config ) 
+ <<constructor>>  Grid( grid : Grid )

Grid
GridImplementation

UnstructuredStructured

Figure 7: UML class diagram for the Grid class
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Because this basic Grid class can make no assumptions on whether it wraps a Struc-
tured or a Unstructured concrete implementation, it can only expose an interface
for the most general type of grids: the Unstructured approach. This means that we
can find out the number of grid points with the size() function, and that we can
iterate over all points, assuming no particular order. The following C++ code shows
how to iterate over all points, and use the projection to get longitude-latitude
coordinates.

Grid grid( "O1280" );
Log :: info () << "The grid contains " << grid.size () << " points . \n";
for( PointXY p, grid ) {

Log :: info () << "xy: " << p << "\n";
double x = p.x();
double y = p.y();

PointLonLat pll = grid. projection (). lonlat (p);
Log :: info () << " lonlat : " << pll << "\n";
double lon = pll.lon ();
double lat = pll.lat ();

}

Listing 5: Iterating over all points of a octahedral reduced Gaussian grid (O1280)

Note
In above C++ code we used the projection to compute the longitude and
latitude coordinates. For the used octahedral Gaussian grid however,
the projection is of the “lonlat” type by construction, meaning that x
and y are already equivalent to lon and lat respectively. The second
part in the for loop was thus not necessary for this particular grid.

The basic Grid class shown in Figure 7 also exposes a function uid() which returns
a string which is guaranteed to be unique for every possible grid. This includes
differences in projections and domains as well.

To be able to expose more structure or properties present in the grid, a number of
“grid interpretation” classes are available, that also wrap the used GridImplementa-
tion, but try to cast it to the Structured implementation if necessary. Currently
available interpretations classes are:

• UnstructuredGrid: The grid is unstructured and cannot be interpreted as
structured.

• StructuredGrid: The grid may be regular or reduced.
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• RegularGrid: The grid is regular.

• ReducedGrid: The grid is reduced, and not regular.

• GaussianGrid: The grid may be a global regular or reduced Gaussian grid.

• RegularGaussianGrid: The grid is a global regular Gaussian grid.

• ReducedGaussianGrid: The grid is a global reduced Gaussian grid, and not a
regular grid.

• RegularLonLatGrid: The grid is a global regular longitude-latitude grid.

• RegularPeriodicGrid: The grid is a periodic (in x) regular grid.

• RegularRegionalGrid: The grid is a regional non-periodic regular grid, and
can have any projection.

Note that there is no use case for interpreting a grid as e.g. “octahedral reduced
Gaussian” or “classic reduced Gaussian”, as it does not bring any benefit over the
ReducedGaussianGrid interpretation class.

Just like the basic Grid class, these interpretation classes have a function valid() .
Rather than throwing errors or aborting the program if the constraints listed
above are not satisfied, the user has to call the valid() function to assert the
interpretation is possible. Figure 8 illustrates the above list schematically. Arrows
indicate a “can be interpreted by” relationship.

Grid

StructuredGrid

ReducedGridGaussianGrid

ReducedGaussianGridRegularGaussianGridRegularLonLatGrid

RegularGrid

RegularPeriodicGrid RegularRegionalGrid

UnstructuredGrid

Figure 8: UML class inheritance diagram for Grid classes
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Note
For a NWP model, you can usually safely assume the grid interpreta-
tions as the model can usually only work with a certain type of grid.
ECMWF’s IFS-model for instance, can assume that all used grids
can be interpreted by the GaussianGrid class, whereas a LAM-model
could e.g. assume the RegularRegionalGrid interpretation.

4.2.3.1 UnstructuredGrid

The UnstructuredGrid interpretation class constrains the grid implementation to
be Unstructured. No assumption on any form of structure can be made. Also no
assumption on the domain nor the projection used is made.

Figure 9 shows the UML class diagram of the StructuredGrid. The first two
constructors listed effectively create a new grid, whereas the third constructor
accepts any existing grid, and reinterprets it instead. No copy or extra storage
is then introduced, since the wrapped GridImplementation is a reference counted
pointer (a.k.a. shared_ptr ), of which the reference count is increased and decreased
upon UnstructuredGrid construction and destruction respectively.

Grid

+ valid() : Boolean <<override>>
+ lonlat( n : Integer ) : PointLonLat
+ xy( n : Integer ) : PointXY

<<constructor>>    UnstructuredGrid( name : String )
<<constructor>>    UnstructuredGrid( configuration : Config )
<<constructor>>    UnstructuredGrid( xy : PointXY[] )
<<constructor>>    UnstructuredGrid( grid : Grid )

UnstructuredGrid UnstructuredGrid
is valid when internal 
GridImplementation
is Unstructured

lonlat() uses the 
Projection to convert 
xy to lonlat

Figure 9: UML class diagram for the UnstructuredGrid class

An UnstructuredGrid exposes two extra functions xy(n) and lonlat(n) . The first
function gives random access to the (x,y) coordinates of grid point n. The second
function is a convenience function that internally uses the grid Projection to project
the grid coordinates xy(i,j) to geographic coordinates.

4.2.3.2 StructuredGrid
The StructuredGrid interpretation class constrains the grid implementation to be
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Structured. The grid may be regular or reduced. It makes no assumptions on
whether the domain is global, periodic, or regional, or whether any projection is
used. Almost any grid with some form of structure in a single area can therefore
be interpreted by this class.

Figure 10 shows the UML class diagram of the StructuredGrid. The first two
constructors listed effectively create a new grid, whereas the third constructor
accepts any Grid , and reinterprets it instead if possible. No copy or extra storage
is then introduced, since the wrapped GridImplementation is a reference counted
pointer (a.k.a. shared_ptr ), of which the reference count is increased and decreased
upon StructuredGrid construction and destruction respectively.

Grid

+ valid() : Boolean <<override>>
+ periodic() : Boolean

+ lonlat( i : Integer, j : Integer ) : PointLonLat
+ lonlat( i : Integer, j : Integer, out lonlat : Real[2] )

+ nx( j : Integer ) : Integer
+ ny() : Integer
+ x( i : Integer, j : Integer) : Real
+ y( j : Integer ) : Real
+ xy( i : Integer, j : Integer ) : PointXY
+ xy( i : Integer, j : Integer, out xy : Real[2] )
+ nxmax() : Integer
+ nxmin() : Integer

<<constructor>>    StructuredGrid( name : String )
<<constructor>>    StructuredGrid( configuration : Config )
<<constructor>>    StructuredGrid( grid : Grid )

StructuredGrid

StructuredGrid
is valid when internal 
GridImplementation
is Structured

x follows an 
equidistant spacing 
which may be 
different per line j

periodic == true 
means that x( iLast, j) 
is one x-increment 
from x( iFirst, j ) in 
cylindric coordinates

lonlat() uses the 
Projection to convert 
xy to lonlat

Figure 10: UML class diagram for the StructuredGrid class

With the information that the grid can only be reduced or regular, new accessor
functions can be exposed to access grid points more effectively through indices
(i,j). The only functions that can be guaranteed to apply for both regular and
reduced grids, are the ones that assume a reduced grid. This means that the x
coordinate and the number of points on a parallel depend on the parallel itself,
denoted by index j. For convenience, a function lonlat(i,j) is available that
internally uses the grid Projection to project the grid coordinates xy(i,j) to
geographic coordinates.

4.2.3.3 RegularGrid
A RegularGrid is a specialisation of a StructuredGrid by further constraining that
the number of points on every parallel is equal. In other words, points are now also
aligned in y direction. The grid then forms a Cartesian coordinate system.
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With this information, access to the x coordinate of a point is now independent of
the index j, and only depends on the index i. The relevant functions that can be
adapted now are nx() and x(i) . Using these functions can possibly increase the
performance of algorithms.

Grid

StructuredGrid

+ valid() : Boolean <<override>>

+ nx() : Integer
+ x( i : Integer ) : Real

<<constructor>>    RegularGrid( name : String )
<<constructor>>    RegularGrid( configuration : Config )
<<constructor>>    RegularGrid( grid : Grid )

RegularGrid

For a RegularGrid, 
every line j has equal 
number of points,
so that x and nx don't 
depend on line j.

RegularGrid is valid
when it is a valid 
StructuredGrid, and 
nxmin() == nxmax()

Figure 11: UML class diagram for the RegularGrid class

4.2.3.4 ReducedGrid
A ReducedGrid is, unlike the RegularGrid, not a specialisation of the StructuredGrid
in terms of functionality, but it does add the constraint that the grid is only valid
when it is not regular. Figure 12 shows the class diagram for this type of grid.

Grid

StructuredGrid

+ valid() : Boolean <<override>>

<<constructor>>    ReducedGrid( name : String )
<<constructor>>    ReducedGrid( configuration : Config )
<<constructor>>    ReducedGrid( grid : Grid )

ReducedGrid

ReducedGrid is valid
when it is a valid 
StructuredGrid, and 
nxmin() != nxmax()

Figure 12: UML class diagram for the ReducedGrid class

4.2.3.5 GaussianGrid
A GaussianGrid is a StructuredGrid with the additional constraint that the grid
is globally defined with an even number of parallels that follow the roots of a
Legendre polynomial in the interval (90◦,-90◦) [9]. This class exposes an additional
function N() , which is the so called Gaussian number, equivalent to the number of
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parallels between the North Pole and the equator. The x-coordinate of each first
point of a parallel starts at 0◦ (Greenwich meridian). Figure 13 shows the class
diagram for the GaussianGrid.

Grid

StructuredGrid

+ valid() : Boolean <<override>>
+ N() : Integer

<<constructor>>    GaussianGrid( name : String )
<<constructor>>    GaussianGrid( configuration : Config )
<<constructor>>    GaussianGrid( grid : Grid )

GaussianGrid GaussianGrid is
valid when y follows 
the roots of Legendre 
polynomials in the 
interval (90,-90) and 
when the domain is 
global

N is known as the 
Gaussian number.
It is equivalent to
ny / 2

Figure 13: UML class diagram for the GaussianGrid class

4.2.3.6 RegularGaussianGrid
A RegularGaussianGrid combines the properties of a RegularGrid and a Gaussian-
Grid. It can be defined by a single number N (the Gaussian number). The number
of points in x− and y-direction are by convention

nx = 4 N

ny = 2 N

Figure 14 shows the class diagram for the RegularGaussianGrid. As can be seen in

+ valid() : Boolean <<override>>
<<constructor>>    RegularGaussianGrid( N : Integer )

<<constructor>>    RegularGaussianGrid( name : String )
<<constructor>>    RegularGaussianGrid( configuration : Config )
<<constructor>>    RegularGaussianGrid( grid : Grid )

RegularGaussianGrid

Grid

StructuredGrid

GaussianGridRegularGrid

RegularGaussianGrid 
is valid when it is a 
valid RegularGrid, and 
a valid GaussianGrid

nx  = 4*N
ny  = 2*N

Figure 14: UML class diagram for the RegularGaussianGrid class

the class diagram, an additional constructor is available, taking only this Gaussian
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number N , so that it is easy to create grids of this type. These grids can also be
created through the constructor taking the name “F<N>”, with <N> the Gaussian
number N .

4.2.3.7 ReducedGaussianGrid
A ReducedGaussianGrid combines the properties of a ReducedGrid and a Gaussian-
Grid. A single number N (the Gaussian number), defines the number of parallels
(ny = 2 N), but no assumptions are made on the number of points on each parallel.

Figure 15 shows the class diagram for the ReducedGaussianGrid. As can be seen

+ valid() : Boolean <<override>>
<<constructor>>    ReducedGaussianGrid( nx : Integer[ny] )

<<constructor>>    ReducedGaussianGrid( name : String )
<<constructor>>    ReducedGaussianGrid( configuration : Config )
<<constructor>>    ReducedGaussianGrid( grid : Grid )

ReducedGaussianGrid

Grid

StructuredGrid

ReducedGridGaussianGrid

RegularGaussianGrid 
is valid when it is a 
valid ReducedGrid, and 
a valid GaussianGrid

Figure 15: UML class diagram for the ReducedGaussianGrid class

in the class diagram, an additional constructor is available, taking an array of
integer values with size equal to the number of parallels (must be even). The values
correspond to the number of points for each parallel. The WMO GRIB standard
also refers to this array as “PL”, and IFS refers to this array as “NLOEN”. In Atlas it
is referred to as the array nx (cfr. the StructuredGrid). The number of parallels ny
is inferred by the length of this array, and the Gaussian N number is then ny/2,
which is used to define the y-coordinate of the parallels.

Classic reduced Gaussian grids
In practise we tend to use only a small subset of the infinite possible combinations
of reduced Gaussian grids for a specific N number. Until around 2016, ECMWF’s
IFS-model was using reduced Gaussian grids for which the nx-array was not
straightforward to compute. These arrays for all used reduced Gaussian grids were
tabulated. We now refer to these grids as “classic” reduced Gaussian grids, and
they can be created through the name “N<N>”, with <N> the Gaussian number N .
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Not any value of N is possible because there are only a limited number of such
grids created (only the ones used). Atlas can create classic reduced Gaussian grids
for values of N in the list [ 16, 24, 32, 48, 64, 80, 96, 128, 160, 200, 256, 320, 400,
512, 576, 640, 800, 1024, 1280, 1600, 2000, 4000, 8000 ].

Octahedral reduced Gaussian grids
Since around 2016, ECMWF’s IFS-model now uses reduced Gaussian grids for
which the nx-array can be computed by a simple formula rather than a complex
algorithm. These grids are referred to as “octahedral” reduced Gaussian grids. The
nx-array can be computed as follows in C++:

int jLast = 2*N -1;
for( int j=0; j<N; ++j ) {

nx[j] = 20 + 4*j; // Up to equator
nx[jLast -j] = nx[j]; // Symmetry around equator

}

Listing 6: Computing the nx-array for octahedral reduced Gaussian grids, C++

example

In order to refer to these grids easily in common language, and to more easily
construct these grids using the constructor taking a name, the name “O<N>” was
chosen, with <N> the Gaussian number N , and O referring to “octahedral”. The
term “octahedral” originates from the inspiration to project a regularly triangulated
octahedron to the sphere. Few modifications to the resulting grid were made to
make it a suitable reduced Gaussian grid for a spectral transform model [10].

Note
Models or other software applications should not treat the octahedral
reduced Gaussian grid as a special case. For all means and purposes
it is still a reduced Gaussian grid, following all requirements layed out
by the WMO GRIB standard!

4.2.3.8 RegularLonLatGrid
The RegularLonLatGrid is likely the most commonly used grid on the sphere. It is
a global grid regular grid defined in degrees with a uniform distribution both in x-
and in y-direction. Atlas supports 4 variants of the RegularLonLatGrid, each with
2 identifier names:

• standard: L<NLON>x<NLAT> or L<N>
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• shifted: S<NLON>x<NLAT> or S<N>

• longitude-shifted: SLON<NLON>x<NLAT> or SLON<N>

• latitude-shifted: SLAT<NLON>x<NLAT> or SLAT<N>

In the identifier names, <NLON> and <NLAT> denote respectively nx and ny of a
regular grid. For ease of comparison with the Gaussian grids, these grids can also
be named instead with a N number denoting the number of parallels in the interval
[90◦, 0◦) – between the North Pole and equator by including Pole and excluding
equator. The x- and y-increment is then computed as 90◦/N . For each of the grids,
all points are defined in the range 0◦ ≤ x < 360◦ and −90◦ ≤ y ≤ +90◦. For the
standard case, the first and last parallel are located exactly at respectively the
North and South Pole. Usually the number of parallels ny = <NLAT> is odd, so
that there is also exactly one parallel on the equator. It is also guaranteed that the
first point on each parallel is located on the Greenwich meridian (x = 0◦). In this
context, shifted denotes a shift or displacement of x- and y-coordinates of all points
with half increments with respect to the standard (or unshifted) case. In order to
achieve the same x- and y-increment as the standard case, the shifted case should
be constructed with one less parallel. The two remaining cases longitude-shifted
and latitude-shifted shift only respectively the x or y coordinate of each grid point.

Figure 16 shows the class diagram for the RegularLonLatGrid. It can be seen that
this class exposes 4 functions to query which of the 4 variants is presented.

+ valid() : Boolean <<override>>

+ standard()      : Boolean
+ shifted()       : Boolean
+ shiftedLon()    : Boolean
+ shiftedLat()    : Boolean

<<constructor>>    RegularLonLatGrid( name : String )
<<constructor>>    RegularLonLatGrid( configuration : Config )
<<constructor>>    RegularLonLatGrid( grid : Grid )

RegularLonLatGrid

Grid

StructuredGrid

RegularGrid

RegularLonLatGrid
is valid when it is a valid global RegularGrid, 
its Projection is "lonlat", and spacing in y is 
equidistant

standard: 
    x(iFirst) = 0
    y(jFirst) = 90
shifted :
    x(iFirst) = dx / 2 
    y(jFirst) = 90 -  dy / 2
shiftedLon :  
    x(iFirst) = dx / 2
    y(jFirst) = 90
shiftedLat  : 
    x(iFirst) = 0
    y(jFirst) = 90 - dy / 2

Figure 16: UML class diagram for the RegularLonLatGrid class
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4.2.3.9 RegularPeriodicGrid
The RegularPeriodicGrid can be used to assert that the grid is a regular grid with
equidistant spacing in x- and y-direction, and with periodicity in the x-direction.
The latter enforces an implicit additional constraint that x and y are defined in
degrees. Figure 17 shows the class diagram for the RegularPeriodicGrid.

+ valid() : Boolean <<override>>

<<constructor>>    RegularPeriodicGrid( name : String )
<<constructor>>    RegularPeriodicGrid( configuration : Config )
<<constructor>>    RegularPeriodicGrid( grid : Grid )

RegularPeriodicGrid

Grid

StructuredGrid

RegularGrid

RegularPeriodicGrid
is valid when it is a valid RegularGrid, 
periodic in x-direction, and spacing in y is 
equidistant.
The units of the projection are restricted to be 
in degrees.

Figure 17: UML class diagram for the RegularPeriodicGrid class

4.2.3.10 RegularRegionalGrid
The RegularRegionalGrid is a grid that asserts that the grid is not global nor
periodic. The gridpoints must be equidistant both in x- and y-direction. No
restrictions on projections are made. This grid would be the typical use-case grid
to use in conjuction with e.g. a Lambert, Mercator, or RotatedLonLat projection.
Figure 18 shows the class diagram for the RegularRegionalGrid. Construction of

+ valid() : Boolean <<override>>

<<constructor>>    RegularRegionalGrid( name : String )
<<constructor>>    RegularRegionalGrid( configuration : Config )
<<constructor>>    RegularRegionalGrid( grid : Grid )

RegularRegionalGrid

Grid

StructuredGrid

RegularGrid

RegularRegionalGrid
is valid when it is a valid RegularGrid, 
not global, not periodic, and spacing in y is 
equidistant.
No restrictions  on projections are made.

Figure 18: UML class diagram for the RegularRegionalGrid class

grids of this type can be done in various ways through configuration. Refer to
ESCAPE deliverable report D4.4 [3] for more information.
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4.2.4 Partitioner

Even though the Grid object itself is not distributed in memory as it does not have
a large memory footprint, it is necessary for parallel algorithms to divide work over
parallel MPI tasks.

There exist various strategies in how to partition a grid, where each strategy may
offer different advantages, depending on the grid and numerical algorithms to be
used.

Atlas implements a grid Partitioner class, that given a grid, partitions the grid and
creates a Distribution object that describes for each grid point which partition it
belongs to. Figure 19 illustrates the UML class diagram for the Partitioner class.
Following a similar design philosophy as before, the Partitioner class wraps an
abstract polymorphic PartitionerImplementation object. Figure 20 illustrates the
UML class diagram for the Distribution class.

+ partition( grid : Grid ) : Distribution
+ type() : String

<<constructor>>    Partitioner( configuration : Config )
<<constructor>>    Partitioner( partitioner : Partitioner )

- implementation : PartitionerImplementation
Partitioner

1*
Partitioner

Implementation

EqualRegions Checkerboard

MatchingMesh<<constructor>>    MatchingMeshPartitioner( mesh : Mesh,
    configuration : Config )

MatchingMeshPartitioner

<constructs>

Figure 19: UML class diagram for the Partitioner class

+ nb_partitions() : Integer
+ operator()( point : Integer ) : Integer
+ size() : Integer

<<constructor>>    Distribution( grid : Grid, partitioner : Partitioner )
Distribution

Figure 20: UML class diagram for the Distribution class

Currently there are 3 concrete implementations of the PartitionerImplementation:

• Checkerboard ( type: “checkerboard” ) – Partitions a grid in regular zones

• EqualRegions ( type: “equal_regions” ) – Partitions a grid in equal regions,
reminiscent of a disco ball.

• MatchingMesh ( type: “matching_mesh” ) – Partitions a grid such that grid
points following the domain decomposition of an existing mesh which may
be based on a different grid.
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The Checkerboard and EqualRegions implementations can be created from a config-
uration object only. The MatchingMesh implementation requires a further mesh
argument to its constructor. For this reason, a MatchingMeshPartitioner class ex-
ists whose only purpose is that it knows how to construct its related MatchingMesh
implementation with the extra mesh argument.

4.2.4.1 Checkerboard Partitioner
For regular grids, such as the one depicted in Figure 4c, a logical domain decom-
position would be a checkerboard. The grid is then divided as well as possible
into approximate rectangular zones in Cartesian grid coordinates (x,y) with an
equal number of grid points. An example of this partitioning algorithm is shown in
Figure 21.

Figure 21: Example Checkerboard partitioning of a shifted regular longitude-latitude
grid (S64x32) in 32 partitions.

4.2.4.2 EqualRegions Partitioner
For reduced grids as the ones shown in Figure 4b and Figure 4d or for uniformly
distributed unstructured grids, an “equal regions” domain decomposition is more
advantageous [11]–[13]. The “equal regions” partitioning algorithm divides a two-
dimensional grid of the sphere (i.e. representing a planet) into bands from the
North pole to the South pole. These bands are oriented in zonal directions and
each band is then split further into regions containing equal number of grid points.
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The only exceptions are the bands containing the North or South Pole, that are
not subdivided into regions but constitute North and South polar caps.

An example of this partitioning algorithm is shown in Figure 22

Figure 22: Example EqualRegions partitioning of a N16 classic reduced Gaussian
grid in 32 partitions.

4.2.4.3 MatchingMesh Partitioner
TheMatchingMeshPartitioner allows to create a Distribution for a grid such that the
grid points follows the domain decomposition of an existing mesh (described in detail
in Section 4.3). This partitioning strategy is particularly useful when grid points of
a partition should be contained within a mesh partition present on the same MPI
task to avoid parallel communication during coupling or interpolation algorithms.
Note that there is no guarantee of any load-balance here for the partitioned grid.
Figure 23 shows an example application of the MatchingMeshPartitioner.

4.3 Mesh

For a wide variety of numerical algorithms, a Grid (i.e. a mere ordering of points
and their location) is not sufficient and a Mesh might be required. This is usually
obtained by connecting grid points using polygonal elements (also referred to as
cells), such as triangles or quadrilaterals. A mesh, denoted by M, can then be
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Figure 23: Example partitioning in 32 parts of a F8 rectangular Gaussian grid
(solid dots) using the domain decomposition of an existing meshed N24 classic
reduced Gaussian grid. Each domain is shaded and surrounded by a solid line. The
jagged lines of the existing N24 mesh subdomains are contours of its elements.

defined as a collection of such elements Ωi:

M := ∪N
i=1 Ωi . (1)

For regular grids, the mesh elements can be inferred, as a blocked arrangement
of quadrilaterals. For unstructured grids or reduced grids (Section 4.2), these
elements can no longer be inferred, and explicit connectivity rules are required. The
Mesh class combines the knowledge of classes Nodes, Cells, Edges, and provides
a means to access connectivities or adjacency relations between these classes).
Nodes describes the nodes of the mesh, Cells describes the elements such as

+ nodes : Nodes
+ cells : Cells
+ edges : Edges

Mesh

+ lonlat : Field
+ global_index : Field
+ partition : Field
+ remote_index : Field
+ edge_connectivity : Connectivity
+ cell_connectivity : Connectivity

Nodes

+ global_index : Field
+ partition : Field
+ remote_index : Field
+ node_connectivity : Connectivity
+ edge_connectivity : Connectivity
+ elements : vector<Elements>

Cells

+ global_index : Field
+ partition : Field
+ remote_index : Field
+ node_connectivity : Connectivity
+ cell_connectivity : Connectivity
+ elements : vector<Elements>

Edges

1

1 1

1

1

1

Figure 24: Mesh composition
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triangles and quadrilaterals, and Edges describes the lines connecting the nodes
of the mesh. Figure 24 sketches the composition of the Mesh class with common
access methods for its components. Differently from the Grid, the Mesh may be
distributed in memory. The physical domain S is decomposed in sub-domains Sp

and a corresponding mesh partitionMp is defined as:

Mp := {∪ Ω , ∀ Ω ∈ Sp}. (2)

More details regarding this aspect are given in Section 4.4.

A Mesh may simply be read from file by a MeshReader, or generated from Grid
by a MeshGenerator. The latter option is illustrated in Figure 2, where the grid
points will become the nodes of the mesh elements. Listing 7 shows how this can
be achieved in practice, and Figure 25b visualises the resulting mesh for grids N16
and O16.

Grid grid( "O16" );
MeshGenerator generator ( " structured " );
Mesh mesh = generator . generate ( grid );

Listing 7: C++ Mesh generation from a StructuredGrid

Note
For UnstructuredGrids, another Meshgenerator needs to be used
based on e.g. Delaunay triangulation (type=“delaunay”). Whereas
the StructuredMeshGenerator is able to generate a parallel distributed
mesh in one step, the DelaunayMeshGenerator currently only supports
generating a non-distributed mesh using one MPI task. In the future
it is envisioned that this implementation will be parallel enabled as
well.

(a) classic Gaussian, N16 (b) octahedral Gaussian, O16

Figure 25: Mesh generated for two types of reduced grids (Figure 4)
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Because several element types can coexist as cells, the class Cells is composing a
more complex interplay of classes, such as Elements, ElementType, BlockConnectiv-
ity, and MultiBlockConnectivity. This composition is detailed in Figure 26. Atlas

CellsElements  (of 1 type)

MultiBlockConnectivityBlockConnectivityElementType

1

0..*

1

1

1

0..*

10..*

0..* 1

Figure 26: Mesh Cells diagram.

provide various type of connectivity tables: BlockConnectivity, IrregularConnectiv-
ity and MultiBlockConnectivity. BlockConnectivity is used when all elements of
the mesh are of the same type, while IrregularConnectivity is more flexible and
used when the elements in the mesh can be of any type. The BlockConnectivity
implementation has a regular structure of the lookup tables and therefore provides
better computational performance compared to the IrregularConnectivity. Finally
the MultiBlockConnectivity supports those cases where the mesh contains various
types of elements but they can still be grouped into collections of elements of the
same type so that numerical algorithms can still benefit from performing operations
using elements of one element type at a time. The Elements class provides the view
of elements of one type with node and edge connectivities as a BlockConnectivity.
The interpretation of the elements of this one type is delegated to the ElementType
class. The Cells class is composed of multiple Elements and provides a unified
view of all elements regardless of their shape. The MultiBlockConnectivity provides
a matching unified connectivity table. Each block in the MultiBlockConnectivity
shares its memory with the BlockConnectivity present in the Elements to avoid
memory duplication (see Figure 27).

1

2

3

4

5

1

2

1

2

3

MultiBlock
Connectivity

Block
Connectivity

Block
Connectivity

Figure 27: BlockConnectivity points to blocks of MultiBlockConnectivity. Zig-zag
lines denote how the data is laid out contiguously in memory.

Although currently the mesh is composed of two-dimensional elements such as
quadrilaterals and triangles, three-dimensional mesh elements such as hexahedra,
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tetrahedra, etc. are envisioned in the design and can be naturally embedded within
the presented data structure. However, at least for the foreseeable future in NWP
and climate applications, the vertical discretisation may be considered orthogonal
to the horizontal discretisation due to the large anisotropy of physical scales in
horizontal and vertical directions. Given a number of vertical levels, polygonal
elements in the horizontal are then extruded to prismatic elements oriented in the
vertical direction (e.g. [14]).

4.4 Parallelisation

Parallelisation in Atlas is achieved through distributing the Mesh into different
partitions, each acting like a smaller mesh and each mesh partitionMp is managed
by one MPI task. The idea is to load-balance numerical computations and memory
among the MPI tasks, meaning that every mesh partition has approximately the
same number of elements, or the same number of nodes.

Looking back at the typical workflow on how to use Atlas, presented in Figure 2,
we start with a Grid object that doesn’t have any notion of parallelisation, and
we want to end up with a distributed Mesh object. One approach could be to
first generate the mesh from the grid on one MPI task with a MeshGenerator
object (see Section 4.3), then call a partitioning algorithm on the mesh, and then
distribute the mesh partitions to the other MPI tasks. This approach has major
flaws in parallel efficiency as many MPI tasks are waiting for computations of the
master MPI task to finish, and then wait to receive their mesh partition. Another
approach would be to do a partitioning of the grid points before or during the mesh
generation step, and only generate the mesh partitions using the grid points whose
partitioning corresponds to the required MPI task. In principle this is applicable
to both UnstructuredGrids and StructuredGrids. Currently Atlas has however only
implemented such parallel enabled mesh generator for StructuredGrids.

Examples of two meshes partitioned into different parallel regions using the Equal-
Regions partitioning algorithm are illustrated in Figure 28.

Every mesh partition can be regarded as an independent mesh, but to allow for
computational stencils that span from one mesh partition to the next, halo’s that
overlap are created between relevant mesh partitions. Atlas provides functionality to
incrementally grow the overlap between mesh partitions by node-sharing elements.
Figure 29 shows the overlap region generated for two such regions, as well as a so
called “periodic overlap region” that can be used to treat the periodic East-West
boundary as if it were an internal boundary between mesh partitions. Discrete field
values present in overlap regions require synchronisation with values of neighbouring
partitions for performing stencil operations. For this synchronisation, the mesh
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Figure 28: EqualRegions domain decomposition. Left: O1280 mesh with ∼ 6.6
million nodes (∼ 9 km grid spacing) in 1600 partitions. Right: O32 mesh with 5248
nodes (∼ 280 km grid spacing) in 32 partitions.

Figure 29: Parallel overlap regions or halo’s shown for a O32 mesh with 32 partitions.

partition must be aware of how it fits inside the whole mesh. As shown in Figure 24,
the Nodes, Cells, and Edges classes contain three fields, intended as discrete values,
that provide exactly this awareness.

• The field named global_index contains a unique global index or ID for each
node or element in the mesh partition as if the mesh was not distributed.
The global index is independent of the number of partitions.

• The field named partition contains the partition index that has ownership
of the node or element. Nodes or elements whose partition does not match
the partition index of the mesh partition are also called ghost nodes or ghost
elements respectively. These ghost entities merely exist to facilitate stencil
operations (such as derivatives) or to complete, for instance, a mesh element.

39



D1.3 – Development of Atlas, a flexible data structure framework

• The field named remote_index contains the location or local index of each
node or element on the partition that owns it.

With the knowledge of partition and remote_index, it is possible to know, for each
element or node, which partition owns it and at which local index therein. Usually
the Atlas’ user will not be aware of these three fields as they are required only for
constructing Atlas’ internal parallel communication capabilities.

Currently, Atlas provides two parallel communication classes that, given the three
fields such as partition, remote_index and global_index, can apply parallel commu-
nication operations repeatedly as needed:

• The GatherScatter class implements the communication operation that gath-
ers data from all MPI tasks to one MPI task, and vice versa: the communi-
cation operation that scatters or distributes all data from one MPI task to
all MPI tasks.

• The HaloExchange class implements the communication operation that sends
and receives data to and from MPI tasks containing nearest-neighbour parti-
tions. This operation is typically required when synchronising halo’s of ghost
entities surrounding a domain partition.

These parallel communication classes form building blocks that provide parallel
capabilities to the FunctionSpace class, which can manage the gathering, scattering
or halo-exchanging of Fields.

4.5 FunctionSpace

The FunctionSpace class is introduced because a Field (Section 4.6) can be discre-
tised on the computational domain in various ways: e.g. on a grid, on mesh-nodes,
mesh-cell-centers or spectral coefficients. The representation of a given variable
is intimately related to the spatial numerical discretisation strategy one wants to
adopt (e.g. finite volume, spectral element, spectral transform, etc.). In addition
to interpreting how a Field is discretised, the FunctionSpace also manages how the
Field is parallelised and laid out in memory. It implements parallel operations such
as gather and scatter, reduce-all, point-to-point communications, thus enabling the
practical use of fields within parallel numerical algorithms.

In Atlas, the FunctionSpace concept, depicted in Figure 30, is implemented in a
modular OO paradigm that allows adding as many different function spaces as
required. This modularity allows third-party applications to extend the library

40



D1.3 – Development of Atlas, a flexible data structure framework

functionspace::
NodeColumns

functionspace::
EdgeColumns

Mesh

HaloExchange

GatherScatter

0..* 0..*1 1

1

1

1

1

1

1

1

functionspace::
StructuredColumns

functionspace::
Spectral

grid::Structured

Trans

Parallelisation

FunctionSpaceField
managed by

1 1 1

1 1

1

0..*

Figure 30: FunctionSpace implementations including building blocks required to
interpret Fields and abstract parallelisation.

with their own FunctionSpaces while still profiting from the parallelisation primi-
tives provided by Atlas (highlighted in dashed blue). The currently implemented
FunctionSpace classes include NodeColumns, EdgeColumns, StructuredColumns
and Spectral:

• The NodeColumns function space class describes the discretisation of fields
with values collocated at the nodes of the mesh, horizontally, and may have
multiple layers defined in the vertical direction. Parallelisation is defined
in the horizontal plane, so that complete vertical columns are available on
each partition. The memory layout for fields defined using the NodeColumns
function space is illustrated in Figure 31. A HaloExchange object and
GatherScatter object are responsible for the necessary parallel operations
(Section 4.4). The NodeColumns function space also implements some simple
additional features, such as calculating global minimum and maximum values
of fields as well as some global reduction computations such as arithmetic
mean values.

• The EdgeColumns function space class describes the discretisation of fields
with values collocated at the edges of the mesh, and may have multiple layers
defined in a vertical direction. The various operations just described for the
NodeColumns class are also available for this class.

• The StructuredColumns function space class describes the discretisation of
distributed fields on a Structured grid object. Currently the Structured grid
must be Gaussian (see Section 4.2) because the function space delegates its
parallel primitives to a specific Trans object that only supports Gaussian grids.
As the Trans object is an interface with an external library that implements
spectral transformations, we do not report the details here, but it is a good
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example of interfacing with pre-existing high performance codes. In a future
release the parallelisation will be generalised to use a GatherScatter object
instead, which does not rely on having a Gaussian grid. A field described
using this function space, like the two above, can also have vertical levels.

• The Spectral function space class describes a field in terms of vertical layers
of horizontal spherical-harmonics (global spherical representation). The
parallelisation (gathering and scattering) is again delegated to the Trans
object.

4*N + 0

4*N + 1

4*N + 2

4*N + 3

1*N + 0

1*N + 1

1*N + 2

1*N + 3

0*N + 0

0*N + 1

0*N + 2

0*N + 3

3*N + 0

3*N + 1

3*N + 2

3*N + 3

2*N + 0

2*N + 1

2*N + 2

2*N + 3

Figure 31: Memory layout for fields discretised using the NodeColumns function
space. A vertical column is contiguous in memory, and can be indexed using direct
addressing. N stands for the number of vertical layers.

Listing 8 and 9 are provided to help understand how a FunctionSpace can be used in
practice to create a field, and perform a halo-exchange on this field. Listing 8 and 9
show both the C++ and the Fortran code, respectively.

NodeColumns functionspace ( mesh , Halo (1) );
Field field = functionspace . createField <double >( field :: levels (100) );
functionspace . haloExchange ( field );

Listing 8: C++ FunctionSpace example use

type( atlas_functionspace_NodeColumns ) :: functionspace
type( atlas_Field ) :: field
functionspace = atlas_functionspace_NodeColumns ( mesh , halo =1 )
field = functionspace % create_field ( atlas_real (8) , levels =100 )
call functionspace % halo_exchange ( field )

Listing 9: Fortran FunctionSpace example use
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4.6 Field

The Field class contains the values of a full scalar, vector or tensor field. The Field
values are stored contiguously in memory, and moreover they can be mapped to
an arbitrary indexing mechanism to target a specific memory layout. The ability
to adapt the memory layout to match for instance the most efficient data access
patterns of a specific hardware is a key feature of Atlas. A Field also contains
Metadata which stores simple information like a name, units, or other relevant
information. The composition of the Field class is illustrated in Figure 32. A Field

Field

FieldSet

1

0..*

0..*

0..*

Array Metadata

1

1

FunctionSpace

0..*

1

Figure 32: Field composition.

delegates the access and storage of the actual memory to an Array that accommo-
dates memory storage on heterogeneous hardware1. If the Field is associated to a
particular FunctionSpace, then the Field also contains a reference to it.

A FunctionSpace, as mentioned, permits the definition of parallel operations to
be carried out on a given field. It defines a memory layout and is related to a
particular spatial discretisation.

Fields can also be grouped together into one or more FieldSets. They can then be
accessed from the FieldSet by name or by index. In C++, access to the actual field
data is via an make_view<Value,Rank>() construct that creates a view of the field
data with a multi-dimensional indexing accessor. In Fortran, the data is directly
accessed through the multi-dimensional array intrinsics of the language. Practical
use of the Field, both using C++ and Fortran, is given Listings 10 and 11.

1The Array is responsible to synchronise data across the device (e.g. a GPU) and the host
(e.g. a CPU).
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FieldSet fields ;
fields .add( functionspace . createField <double >( field :: name(" temperature "),

field :: levels ( nb_levels )) );
fields .add( functionspace . createField <double >( field :: name(" pressure "),

field :: levels ( nb_levels )) );

Field field_T = fields [" temperature "];
Field field_P = fields [" pressure "];

// Create (2D) views of the fields to access the data
auto T = make_view <double ,2>( field_T );
auto P = make_view <double ,2>( field_P );
for( size_t jnode =0; jnode < nb_nodes ; ++ jnode ) {

for( size_t jlev =0; jlev < nb_levels ; ++ jlev) {
// T(jnode ,jlev) = ...
// P(jnode ,jlev) = ...
}

}

Listing 10: C++ Field base class

More detail on the Array and ArrayView class can be found in Section 5.
type( atlas_FieldSet ) :: fields
type( atlas_Field ) :: field_T , field_P
real (8) , pointer :: T(: ,:) , P(: ,:)
fields = atlas_FieldSet ()
call fields %add( functionspace % create_field (kind= atlas_real (8) ,name="

temperature ",levels = nb_levels ) )
call fields %add( functionspace % create_field (kind= atlas_real (8) ,name="

pressure ",levels = nb_levels ) )

field_T = fields %get(" temperature ")
field_P = fields %get(" pressure ")

call field_T %data(T)
call field_P %data(P)

do jnode =1, nb_nodes
do jlev =1, nb_levels
! T(jlev ,jnode) = ...
! P(jlev ,jnode) = ...
enddo

enddo

Listing 11: Fortran Field base class

4.7 Mathematical Operations

Many NWP and climate models contain algorithms to perform a variety of math-
ematical operations on fields such as computing derivatives or integrals. These
operations are common to various applications, and relate closely to certain spatial
discretisations or function spaces. Atlas provides implementations for some of
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these operations given a field that is compatible with the related FunctionSpace
(Section 4.5). Figure 33 sketches the philosophy adopted by Atlas regarding how
to provide these operators. The concrete implementation of the Method concept

+ gradient()
+ divergence()
+ curl()
+ laplacian()

Nabla

+ create( Method ) : Nabla

fvm::Nabla fvm::Method

Method

functionspace::
NodeColumns

functionspace::
EdgeColumns

1

1 1

1 1

0..*
ConcreteOperator ConcreteMethod

Method

10..*

Operator

FunctionSpace

0..*

0..*

Figure 33: Left: general design of numerical operators. Right: Derivative, diver-
gence, curl, and Laplacian implemented in the Nabla vector operator specific for a
finite volume Method [15].

uses the FunctionSpace and Field classes, both required to generate a concrete
numerical method. Atlas currently provides a fvm::Method class, which contains
everything required to construct mathematical operators using an edge-based fi-
nite volume scheme [15]. A concrete fvm::Nabla operator then implements the
actual numerical algorithm using the fvm::Method. Listing 12 details the practical
construction of the fvm::Method and how the gradient of a scalar field defined in
NodeColumns is constructed. Note that this implementation can compute gradients
of three-dimensional fields (with vertical levels), but only computes the horizontal
components.

fvm :: Method method ( mesh );
Nabla nabla( method );

Field scalar_field = method . nodeColumns (). createField <double >(
field :: levels (100) );

Field gradient_field = method . nodeColumns (). createField <double >(
field :: levels (100) , field :: variables (2) );

/* ... code missing that sets up the scalar_field ... */

nabla. gradient ( scalar_field , gradient_field );

Listing 12: C++ numerical operator Nabla that computes the gradient of a scalar
field
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5 Accelerator Support

Atlas is used as the abstraction layer of the underlying grid used for implementing
numerical operators of many of the dwarfs proposed in the ESCAPE project. In
order to support the port of the different dwarfs to heterogeneous architectures the
Atlas library needs to be extended. In particular for NVIDIA GPUs, the memory
space of the accelerator is separated from the CPU that manages the memory. In
this section we describe the developments performed in order to support GPUs by
encapsulating the data-management of the Atlas mesh and field data structures
into the application-programming-interface(API) of Atlas.

In a first phase, different approaches and strategies to support Atlas data structures
for accelerators were studied. Since the ESCAPE DSL (based on the GridTools
library) will also use the Atlas mesh data structures to implement numerical
operators on irregular grids on the sphere (Task 2.3), the interoperability of the
Atlas data structures and ESCAPE DSL library is an important aspect.

Three possible strategies were evaluated:

1. Allocate mirror storages for the accelerator memory within the existing
data structures using the CUDA API for memory management and provide
functions to synchronise the CPU and accelerator memory spaces. In order
to inter-operate with the DSL a converter between GridTools and Atlas is
required.

2. Replace the existing Atlas data structures by GPU capable GridTools storages.

3. Hybrid solution where both options, the Atlas native data structures and
GridTools storages are supported.

Using the GridTools storage has the advantage that its storage management
framework already solves the problem of supporting storages in the accelerator
memory and provides an API to operate on them and synchronise the CPU
and accelerator copies. Additionally the framework allows to flexibly choose the
most efficient memory layout for different computing architectures. Finally an
integration of GridTools storage as the underlying data management layer for Atlas
data structures will provide a high level of interoperability with the DSL, as it
uses the same storages. Therefore option 3 was chosen, since it benefits from the
aforementioned advantages and at the same time retains the native Atlas storage
implementation and does not enforce a dependency on the GridTools library.
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5.1 GridTools storage layer

The GridTools storage module provides flexible data structures for storing fields
on a grid with support for GPU accelerators.

Usually storages of programming languages like C++ or Fortran do not allow to
specify the memory layout of the space (and extra) dimensions of a field. This is a
crucial functionality for performance portability, since different algorithm motifs
and computing architectures require different memory layout for an efficient access
to the memory and to increase the data locality aspects of the algorithm.

The C++ data structures of GridTools are very general and allow to customise
properties like dimensionality of the field, memory layout, alignment, accelerator
support, etc. Listing 13 shows the example of a creation of a customised GridTools
storage. The memory layout is abstracted in this case by the CUDA backend which
chooses the optimal layout for GPUs.

using storage_info_t = storage_traits < Cuda >:: storage_info_t <
3, // Rank
halo <2,2,0> // Halo of size 2 for indices i,j

>;
using data_store_t = storage_traits < Cuda >:: data_store_t <

double , // Data type
storage_info_t // Data storage info

>;

// Horizontal wind field with Ni = Nj = 128 with 2 components (u,v)
data_store_t wind (128 ,128 ,2);

Listing 13: C++ Example of Gridtools storage API. It shows the creation of a
storage for a rank-3 array of double precision and a halo of 2 grid points in the i
and j dimensions.

This low-level GridTools storage framework is managed by the Atlas data structures,
whose API abstracts the underlying implementation (native or GridTools storages)
and allows to access and synchronise the GPU and CPU memory spaces. Further
details will be provided in the following sections.

For more information on the low-level GridTools storage capabilities, refer to the
GridTools developments [6].
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5.2 Atlas and GridTools storage integration

The two main Atlas data structures that need to be supported for accelerators
are the Array, used by the Atlas Field (Section 4.6) and the connectivity classes
used by the Mesh (Section 4.3). Both type of Atlas data structures have now
GPU support by means of the GridTools storage framework and provide an API
to manage the GPU memory space of the fields and connectivity tables.

Additionally the make_view constructs of Atlas support now the creation of specific
array views for the CPU and the GPU device. The Atlas ArrayView is used to
interpret a given storage as N-dimensional array by providing a parenthesis operator
for accessing the data, similar to the Fortran syntax to access N-dimensional arrays.
The GridTools storage has the advantage that the memory layout can be customised
to provide an optimal layout for a specific computing architectures.

The UML class diagram for the Array class and its relation to ArrayView is shown
in Figure 34. It is shown how the Array abstracts its implementation to use either
the Atlas native data storage or the GridTools storage.

Note
To take advantage of the GPU related capabilities, the Grid-
ToolsDataStore implementation needs to be selected with the
CUDA GPU backend. This is achieved via compile time
options -DENABLE_GRIDTOOLS_STORAGE=ON -DENABLE_GPU=ON (see
Section 3.3).

Listing 14 shows and example of creation and use of a CPU array view. Similarly
Listing 15 demonstrate the creation of a storage that is cloned to the GPU and
the creation and use, within a CUDA kernel, of a device view.

Array* ds = Array :: create <double >( nb_nodes , nb_levels );
// Create a host view to interpret the Array as a 2D storage of doubles
auto hv = make_host_view <double , 2 >(*ds);
for ( size_t jnode = 0; jnode < nb_nodes ; ++ jnode ) {

for ( size_t jlev = 0; jlev < nb_levels ; ++ jlev ) {
// hv(jnode , jlev) = ...

}
}

Listing 14: C++ Example of creation of a host array view
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*

1

1- spec : ArraySpec
- data_store : ArrayDataStore

+ valid() : Boolean
+ isOnHost() : Boolean
+ isOnDevice() : Boolean
+ cloneToDevice()
+ cloneFromDevice()
+ syncHostDevice()
+ reactivateDeviceWriteViews()
+ reactivateHostWriteViews()

+ datatype() : DataType
+ size() : Integer
+ rank() : Integer
+ shape() : Integer[Rank]
+ strides() : Integer[Rank]

+ create( DataType, ArrayShape, ArrayLayout ) : Array
+ create<Value>( Ni, Nj, ... : Integer ) : Array

Array

+ size() : Integer
+ rank() : Integer
+ shape( dim : Integer) : Integer
+ valid() : Boolean

operator[] ( i, j, ... : Integer ) : Value

ArrayView
Value, Rank

ArrayDataStore

NativeDataStore GridToolsDataStore

ArraySpec

1

1

make_view<Value,Rank>
make_host_view<Value,Rank>
make_device_view<Value,Rank>

1

Rank stands for  number of 
dimensions or number of indices. It 
can be inferred from the arguments 
passed to create

The operator[]  takes only 
as many indices as Rank

Figure 34: UML diagram for the Array class and its relation to the ArrayView
class

__global__
void kernel_ex (ArrayView <double , 2> dv , size_t nb_levels )
{

for( size_t jlev =0; jlev < nb_levels ; ++ jlev)
dv( threadIdx .x, 3) = ...;

}

// Create an Atlas array
Array* ds = Array :: create <double >( nb_nodes , nb_levels );

// Synchronise the GPU device copy of the array
ds -> cloneToDevice ();

// Create a (2D) view that can be used from a GPU kernel
auto dv = make_device_view <double , 2>(*ds);

// GPU kernel computation that uses the array view
kernel <<< functionspace . nb_nodes () ,1 >>>(dv , nb_levels );
cudaDeviceSynchronize ();

// Synchronise the CPU copy of the array
ds -> cloneFromDevice ();

// create a host view to interpret the Array as a 2D storage of doubles
auto hv = make_host_view <double , 2 >(*ds);

for ( size_t jnode = 0; jnode < nb_nodes ; ++ jnode ) {
for ( size_t jlev = 0; jlev < nb_levels ; ++ jlev ) {

// check the values computed
// if( hv(jnode , jlev) == ... ) ...

}
}

Listing 15: C++ Example of creation of a device array view and use of a GPU
kernel using CUDA 49



D1.3 – Development of Atlas, a flexible data structure framework

Synchronisation protections
Once Atlas can create views of an array in multiple memory spaces (host and
GPU device), the computation can lead to invalid states of the array, if both
the host CPU the GPU views update their corresponding memory space without
synchronising them accordingly, as shown in the following example

// Create an Atlas array
Array* ds = Array :: create <double >( nb_nodes , nb_levels );

// Synchronise the GPU device copy of the array
ds -> cloneToDevice ();

// Create a view that can be used from the CPU
auto hv = make_host_view <double , 2 >(*ds);

// Create a view that can be used from a GPU kernel
auto dv = make_device_view <double , 2>(*ds);

// Modify the host view
for ( size_t jnode = 0; jnode < nb_nodes ; ++ jnode ) {

for ( size_t jlev = 0; jlev < nb_levels ; ++ jlev ) {
hv(jnode , jlev) = 0;

}
}

// Modify the device view using a CUDA kernel
kernel <<<nb_nodes ,1 >>>(dv , nb_levels );
cudaDeviceSynchronize ();

// At this point the two memory spaces are in a different state ,
// invalidating both views
// --> dv.valid () == false
// --> dh.valid () == false

Listing 16: C++ Example of creation of two views (host and device) that modify
concurrently their memory spaces leading to an inconsistent stage label

The current state of a view can be checked anytime with the valid method.

In order to support multiple views that can coexist in the same scope avoiding
invalid states, Atlas gives the possibility to create read only views, that will never
invalidate the state of other existing views, since they do not allow to modify their
data. Listing 17 shows an example of a valid use and coexistence of multiple views
by making use of read only views.
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// Create an Atlas array
Array* ds = Array :: create <double >( nb_nodes , nb_levels );

// Create a read only host view
auto hv = make_host_view <double , 2, true >(* ds);

// Create a write device view
auto dv = make_device_view <double , 2, false >(* ds);

Listing 17: C++ Example of creation and coexistence of multiple views by
creating Atlas read only views (last optional template parameter of the make_view
constructs)

5.3 Fortran fields on accelerators

One of the main functionalities of Atlas is the support of Fortran bindings so that
Fortran numerical operators can be implemented using the underlying Atlas data
structures for meshes and fields.

Therefore the GPU capable storages and API to manage the data has been forwarded
to the Fortran API of Atlas. In order to port Fortran numerical operators to
the GPU, one of the programming models employed by the ESCAPE project is
OpenACC.

OpenACC is a directive based approach to port Fortran operators to accelerators
that allows to retain the original implementation by using directives (comments in
the Fortran code) to instruct the OpenACC which loops should be parallelized in
the GPU.

In order to support the OpenACC development, Atlas connects the GPU allocated
pointers of the fields with the OpenACC gpu pointers. Listing 18 shows an example
of how to use the GPU storages of Atlas to implement an OpenACC kernel on the
GPU.
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type( atlas_Field ) :: field1
type( atlas_Field ) :: field2
real (8) , pointer :: v1 (: ,:)
real (8) , pointer :: v2 (: ,:)

field1 = atlas_Field (kind= atlas_real (8) ,shape =[n,n])
field2 = atlas_Field (kind= atlas_real (8) ,shape =[n,n])

call field1 % clone_to_device ()
call field2 % clone_to_device ()

call field% device_data (v1)
call field% host_data (v2)

!acc data present (v1) copyin (v2)
!$acc kernels
do j=1,n

do i=1,n
v1(i,j) = v2(i,j)+ 42.

enddo
enddo
!$acc end kernels
!$acc end data

Listing 18: Fortran Example of an OpenACC kernel operating on Atlas fields

6 Conclusions
The Atlas C++/ Fortran library provides flexible data structures for both structured
and unstructured meshes and is intended to be applied in NWP or Climate modelling
codes.

One of the key data structure components used in a model is the Field that holds
the actual data of a field variable. During the course of the ESCAPE project,
the Field concept has been extended to be GPU aware so that new algorithmic
approaches previously not possible can now be coded based on Atlas. One approach
is based on the GridTools Domain Specific Language, which is going to be applied
to several ESCAPE dwarfs. Thanks to the ESCAPE project, the use of Atlas fields
is now capable of being used easily in a “host-device” combination of heterogeneous
hardware. Including the expertise of partners using GPU’s and developing GPU
hardware at this early development stage of Atlas has been vital in developing a
future-proof data structure library.

The grid and mesh generation facilities in Atlas have been extended as part of
Deliverable D4.4 to include regional grids defined in projected coordinates (x,y),
rather than geospherical coordinates (longitude,latitude). Thanks to the ESCAPE
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project, the Limited Area Modelling (LAM) community was involved at the early
development stage of Atlas. It would have proved a much more difficult task to
redesign Atlas after the library would have matured without the involvement of
the LAM ESCAPE partners.

A new stable Atlas release for ESCAPE’s further dwarf developments is now
established with this deliverable, and has been tested and compiled with various
compilers and computer architectures.
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