
© ECMWF January 26, 2017

An Introduction to MPI Programming

Paul Burton

Paul.Burton@ecmwf.int

Topics

• Introduction

• Basic Concepts

• Useful MPI references

• “Hello World” – the simplest MPI program

• Compiling & running on the Cray

• Synchronisation

• Sends & Receives

• Collective communications

• Reduction operations

• Blocking & non-blocking sends & receives

2EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Introduction (1)

• Message Passing evolved in the late 1980’s

• Cray was dominate in supercomputing

– with very expensive shared-memory vector processors

– Typically 8-16 custom made very powerful CPUs

• Many companies tried new (cheaper!) approaches to HPC

• Workstation and PC Technology was developing rapidly

– High Volume = Cheap

• “The Attack of the Killer Micros”

• Message Passing was a way to link them together

– many different flavours PVM, PARMACS, CHIMP, OCCAM

• Cray recognised the need to change

– switched to MPP using cheap commodity microprocessors (T3D/T3E)

• But application developers needed portable software

3EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Introduction (2)

• Message Passing Interface (MPI)

– The MPI Forum was a combination of end users and vendors (1992)

– defined a standard set of library calls in 1994

– Portable across different computer platforms (even a heterogeneous system)

– Fortran and C Interfaces

• Used by multiple tasks to send and receive data

– Working together to solve a problem

– Data is decomposed (split) into multiple parts

– Each task handles a separate part on its own processor

– Message passing between tasks to resolve data dependencies

• Primarily intended for communication over a network of Distributed Memory Nodes

– But can also be used with a shared-memory node

• Can scale to thousands of processors - subject to constraints of Amdahl’s Law

4EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Introduction (3)

• The MPI standard is large

– Well over 100 routines in MPI version 1

– Result of trying to cater for many different flavours of message passing and a
diverse range of computer architectures

– And an additional 100+ in MPI version 2 (1997)

– And many more additions in MPI version 3 (2012)

– MPI version 1 contains the core operations, and works whatever version of MPI
you have

• Many sophisticated features

– Designed for both homogenous and heterogeneous environments

• But most people only use a small subset

– IFS was initially parallelised using Parmacs

– This was replaced by about 10 MPI (version 1) routines

• Hidden within “MPL” library

• Send/receives and some collective operations

5EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Introduction (4)

• This course will look at just a few basic routines

• Fortran Interface Only

• MPI version 1.2

• SPMD (Single Program Multiple Data)

• As used at ECMWF in IFS

6EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

SPMD & MPMD

• The SPMD model is by far the most common

– Single Program Multiple Data

– The same executable runs multiple times simultaneously on different processors

– The problem is divided across the multiple executables

– Each executable works on a subset of the data

• MPMD

– Multi Program Multiple Data

– Different executable on different processors

– Useful for coupled models for example

• eg. atmosphere executable, ocean executable, coupling executable

– Part of the MPI 2 standard

– Not currently used by IFS

– Can be mimicked in SPMD mode with a single executable

• Top level branch deciding which “program” (subroutine) this task will run

7EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Some definitions

• Task

– one running instance (copy) of a program – the basic unit of an MPI parallel execution

– Equivalent to a UNIX process

– Each task has direct access to its own memory, but not that of other tasks

– May run on one processor

• Or across many if OpenMP is used as well (threads)

• Or many tasks on one processor (not a good idea!)

• Master

– the master task is by convention, usually the first task in a parallel program : TaskID=0

• Slave

– all other tasks in a parallel program

– Nothing intrinsically different between master/slave – but the parallel program may treat

them differently

8EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Useful MPI references

• MPI standard

– Lots of useful information about MPI’s behaviour & implementation

– http://www.mpi-forum.org/docs/mpi-1.1/mpi-11-html/mpi-report.html

• Open MPI documentation

– A nice easy to use guide to the API (contains MPI v2 too), including
Fortran interface

– http://www.open-mpi.org/doc/v1.10/

• MPI tutorials

– https://computing.llnl.gov/tutorials/mpi/

– http://mpitutorial.com/tutorials/

9EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

http://www.mpi-forum.org/docs/mpi-1.1/mpi-11-html/mpi-report.html
http://www.open-mpi.org/doc/v1.10/
https://computing.llnl.gov/tutorials/mpi/
http://mpitutorial.com/tutorials/

“Hello world” MPI program

• Basic components in all MPI programs

– Four essential housekeeping routines

– The “use mpi” statement

– The concept of Communicators

10EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

program hello

implicit none

print *,"Hello world"

end

“Hello World” with MPI

11EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

program hello

implicit none

use mpi

integer:: ierror,ntasks,mytask

call MPI_INIT(ierror)

call MPI_COMM_SIZE(MPI_COMM_WORLD, ntasks, ierror)

call MPI_COMM_RANK(MPI_COMM_WORLD, mytask, ierror)

print *,"Hello world from task ",mytask," of ",ntasks

call MPI_FINALIZE(ierror)

end

Use mpi : The MPI header file

• The MPI header file

• ** ALWAYS ** include in any routine using MPI

• Contains declarations for constants used by MPI

• May contain interface blocks, so compiler will tell you if you make an

obvious error in arguments to MPI library

– This is not mandated by the standard so you shouldn’t rely on it. You may want

to test Cray’s mpi to see if it does!

• In Fortran77 use include ‘mpif.h’ instead

12EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

use mpi

“Hello World” with MPI

13EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

program hello

implicit none

use mpi

integer:: ierror,ntasks,mytask

call MPI_INIT(ierror)

call MPI_COMM_SIZE(MPI_COMM_WORLD, ntasks, ierror)

call MPI_COMM_RANK(MPI_COMM_WORLD, mytask, ierror)

print *,"Hello world from task ",mytask," of ",ntasks

call MPI_FINALIZE(ierror)

end

MPI_INIT

• Initializes the MPI environment

• Expect a return code of zero for ierror

– If an error occurs the MPI layer will normally abort the job

– best practise would check for non zero codes

– we will ignore for clarity – but see later slides for MPI_ABORT

• On the Cray all tasks execute the code before MPI_INIT

– this is an implementation dependent feature

– avoid doing anything that alters the state of the system before this, eg. I/O

14EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

integer :: ierror

call MPI_INIT(ierror)

“Hello World” with MPI

15EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

program hello

implicit none

use mpi

integer:: ierror,ntasks,mytask

call MPI_INIT(ierror)

call MPI_COMM_SIZE(MPI_COMM_WORLD, ntasks, ierror)

call MPI_COMM_RANK(MPI_COMM_WORLD, mytask, ierror)

print *,"Hello world from task ",mytask," of ",ntasks

call MPI_FINALIZE(ierror)

end

MPI_COMM_WORLD

• An MPI communicator

– A communicator defines a set or group of MPI tasks

• Constant integer value from “use mpi”

• MPI_COMM_WORLD means all tasks

– many MPI programs only ever use MPI_COMM_WORLD

– All our examples only use MPI_COMM_WORLD

• You can create your own communicators to define subsets of MPI tasks

– IFS also creates and uses some additional communicators

• useful when doing collective communications

• Useful if you want to dedicate a subset of tasks to a special job (eg. I/O server)

16EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

use mpi

call MPI_COMM_SIZE(MPI_COMM_WORLD,...

“Hello World” with MPI

17EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

program hello

implicit none

use mpi

integer:: ierror,ntasks,mytask

call MPI_INIT(ierror)

call MPI_COMM_SIZE(MPI_COMM_WORLD, ntasks, ierror)

call MPI_COMM_RANK(MPI_COMM_WORLD, mytask, ierror)

print *,"Hello world from task ",mytask," of ",ntasks

call MPI_FINALIZE(ierror)

end

MPI_COMM_SIZE

• Returns the number of parallel MPI tasks in the given communicator

– MPI_COMM_WORLD in this case – so it’s the total number of MPI tasks

– Value is returned in variable “ntasks”

– The total number of MPI tasks is set from the environment in which you

launched the parallel executable

• eg. aprun on the Cray

• Value can be used to help decompose the problem

– The size of a local array will often be a function of the total data size and the

number of MPI tasks to split the data over

18EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

integer:: ierror,ntasks

call MPI_COMM_SIZE(MPI_COMM_WORLD, ntasks, ierror)

“Hello World” with MPI

19EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

program hello

implicit none

use mpi

integer:: ierror,ntasks,mytask

call MPI_INIT(ierror)

call MPI_COMM_SIZE(MPI_COMM_WORLD, ntasks, ierror)

call MPI_COMM_RANK(MPI_COMM_WORLD, mytask, ierror)

print *,"Hello world from task ",mytask," of ",ntasks

call MPI_FINALIZE(ierror)

end

MPI_COMM_RANK

• Returns the rank (location) of this task within the communicator supplied

– Returns the rank in variable “mytask”

• In the range 0 to ntasks-1 (for the MPI_COMM_WORLD communicator group)

– Used as a task identifier when sending/receiving messages

– WARNING : Easy to make mistakes with this as Fortran arrays normally run 1:n

20EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

integer:: ierror,ntasks,mytask

call MPI_COMM_RANK(MPI_COMM_WORLD, mytask, ierror)

“Hello World” with MPI

21EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

program hello

implicit none

use mpi

integer:: ierror,ntasks,mytask

call MPI_INIT(ierror)

call MPI_COMM_SIZE(MPI_COMM_WORLD, ntasks, ierror)

call MPI_COMM_RANK(MPI_COMM_WORLD, mytask, ierror)

print *,"Hello world from task ",mytask," of ",ntasks

call MPI_FINALIZE(ierror)

end

MPI_FINALIZE

• Tell the MPI layer that we have finished

• Any MPI call after this is an error

– Like MPI_INIT, the MPI standard does not mandate what happens after an

MPI_FINALIZE – cannot guarantee that all tasks still execute after this point

• Does not stop the program – at least one (probably all!) tasks will continue to run

22EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

integer:: ierror

call MPI_FINALIZE(ierror)

MPI_ABORT

• Causes all tasks to abort

– Technically it should be only the tasks in the defined communicator

– All known implementations abort all the tasks

• Even if only one task makes call

23EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

integer:: ierror

call MPI_ABORT(MPI_COMM_WORLD,ierror)

Compiling an MPI Program

• Very easy using modules

– Automatically adds all the flags/libraries required for MPI

24EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

$ module load PrgEnv-cray # Use Cray compilers

$ module load PrgEnv-intel # Use Intel compilers

$ module load PrgEnv-gnu # Use Gnu compilers

$ ftn hello.f90 # produces a.out

$ ftn -c hello.f90 # produces hello.o

$ ftn hello.o -o hello.exe # produces hello.exe

or

or

or

Followed by

Running an MPI Program

• aprun

– Details and many options covered in other lectures

– Here we will use a very simple form

– Run from the MOM node (where your interactive shell is running), launches the

parallel executable on the parallel (ESM) node(s)

– If you’re not in queue “np” (parallel job), then aprun isn’t available…

• mpiexec

– Equivalent command in “nf” (fraction job) or “ns” (serial job) queue

25EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

$ aprun –n 4 <executable>

$ module load cray-snplauncher

$ mpiexec –n 4 <executable>

PBSPro and MPI

• Many varied ways of defining your requirements

• For the exercises we’ll keep it as simple as possible

– Create an interactive shell in which you can run parallel jobs in up to one node

(72 hyperthreaded CPUs)

– You won’t need to wait every time you run an executable!

– Don’t forget to log out when you’re finished!

– Not recommended for regular use!

26EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

$ ssh cca # or ccb

$ qsub -q np -I -l EC_nodes=1 –l EC_hyperthreads=2

queue “np” 1 node

interactive Use hyperthreading

Practical 1

• Copy all the practical exercises to your account on cca or ccb:

• Exercise1a

– Run your own “Hello World” program with MPI

• See the README for details

27EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

$ ssh cca # or ccb

$ mkdir mpi_course ; cd mpi_course

$ cp –r ~trx/mpi.2017/* .

MPI_BARRIER

• Forces all tasks in the specified communicator group to synchronise (wait for each other)

28EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

integer:: ierror

call MPI_BARRIER(MPI_COMM_WORLD,ierror)

P0 Computation Wait Computation

P1 Computation Wait Computation

P2 Computation Computation

P3 Computation Wait Computation

MPI_BARRIER

• A task waits in the barrier until every task has reached it

• Then all tasks exit the call together at the same time

• Deadlock if one task does not reach the barrier

– MPI_BARRIER will wait until the task reaches its cpu limit

• What happens if different tasks call MPI_BARRIER in different parts of the code?

– Could be desired behaviour, or it could be highly confusing bug!

• Why do we need a MPI_BARRIER?

– To ensure a computation is complete before we do some communications

• Although most communications allow us to “block” to do a synchronisation only between the
processors involved

– To do timing

• Allows us to measure the time taken by the “slowest” task

– To enforce an ordering of operations

29EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Enforcing an ordered output using MPI_BARRIER

• What order will these outputs appear in from the different MPI tasks?

• How can we enforce an ordering?

• Where could we add an MPI_BARRIER to force an ordered output?

30EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

WRITE(6,*) ‘Some information from task ‘,MYPROC

DO proc=1,MYPROC

IF (MYPROC == proc) THEN

WRITE(6,*) ‘Some information from task ‘,MYPROC

ENDIF

ENDDO

Practical 2

• Forcing the ordering of output

• Exercise 1b – see the README file for more details…

31EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Message Passing : SEND and RECEIVE

• MPI_SEND

– sends a message from one task to another

• MPI_RECV

– receives a message from another task

• A message is just data with some form of identification

– think of it as an email – the body and some headers

• To: Where the message should be sent to (in MPI, the receiving TaskID)

• Subject: Some description of the contents (in MPI, a “tag”)

• Body: The data itself (can be any size), all basic Fortran types

• You program the logic to send and receive messages

– the sender and receiver are working together

– every send must have a corresponding receive

32EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

MPI Datatypes

• MPI can send variables of any Fortran type

– integer, real, real*8, logical,

– it needs to know the type

• There are predefined constants used to identify types

– MPI_INTEGER, MPI_REAL, MPI_REAL8, MPI_LOGICAL.......

– Defined by “use mpi”

• Also user defined data types

– MPI allows you create types created out of basic Fortran types (rather like a

Fortran 90 structure)

– Allows strided (non contiguous) data to be communicated

– advanced topic not covered here

33EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

MPI Tags

• All messages are given an integer TAG value

– standard says maximum value is at least 32768 (2^31)

• This helps to identify a message (rather like an email’s “subject”)

• Particularly useful when sending multiple messages

– You can chose to receive the particular message you’re interested in by filtering for a

particular tag

• You decide what tag values to use

– Good idea (helps spot problems) to use separate ranges of tags in different

communication areas, eg:

• 1000, 1001, 1002..... in routine a

• 2000, 2001, 2002.... in routine b

– Prevents inadvertent communication between “unmatched” SENDs and RECEIVESs

34EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

CALL MPI_Comm_get_attr(MPI_COMM_WORLD,MPI_TAG_UB,

maxtag, flag, error)

MPI_SEND

35EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

FORTRAN_TYPE:: sbuf

integer:: count, dest, tag, ierror

call MPI_SEND(sbuf, count, MPI_TYPE, dest, tag, &

MPI_COMM_WORLD, ierror)

Argument Description Intent

SBUF The array being sent Input

COUNT The number of elements to send Input

MPI_TYPE Type of SBUF (eg. MPI_REAL)
These type descriptions come from “use mpi”

Input

DEST The taskID to send the message to
TaskID is the rank of the task within the communicator

Input

TAG The message identifier Input

MPI_RECV

36EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

FORTRAN_TYPE:: rbuf

integer:: count, source, tag, status(MPI_STATUS_SIZE),ierror

call MPI_RECV(rbuf, count, MPI_TYPE, source, tag, &

MPI_COMM_WORLD, status,ierror)

Argument Description Intent

RBUF The array being received Output

COUNT The length of RBUF Input

MPI_TYPE Type of RBUF (eg. MPI_REAL) Input

SOURCE The taskID of the sender Input

TAG The message identifier Input

STATUS Information about the message Output

More on MPI_RECV

• MPI_RECV will block (wait) until the message arrives

– if message never sent then deadlock

• task will wait until it reaches cpu time limit, and then dies

• What order will messages be received in?

– For a given pair of processors using the same communicator, the MPI standard

guarantees the messages will be received in the same order they were sent

• This means you need to be careful

– If you are receiving multiple messages from the same task, you MUST do the

MPI_RECVs in the same order as the MPI_SENDs (ie. matching tags)

– Otherwise the first MPI_RECV will wait forever, and eventually die

– What happens if you don’t know the ordering of the MPI_SENDs?

37EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

How to be less specific on MPI_RECV

• The source and tag can be more open

– MPI_ANY_SOURCE means receive from any sender

– MPI_ANY_TAG means receive any tag

– Useful in more complex communication patterns

– Used to receive messages in a more random order

– helps smooth out load imbalance

– May require over-allocation of receive buffer

• If different messages will be different lengths – we need to ensure the “rbuf” array is big

enough for the longest message

• But how do we know what message we’ve received?

– status(MPI_SOURCE) will contain the actual sender

– status(MPI_TAG) will contain the actual tag

38EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

An example : task 0 sends a message to task 1

39EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

subroutine transfer(values,len,mytask)

implicit none

use mpi

integer:: mytask,len,source,dest,tag,ierror,status(MPI_STATUS_SIZE)

real:: values(len)

tag = 12345

if (mytask.eq.0) then

dest = 1

call MPI_SEND(values,len,MPI_REAL,dest,tag,MPI_COMM_WORLD,ierror)

elseif (mytask.eq.1) then

source = 0

call MPI_RECV(values,len,MPI_REAL,source,tag,MPI_COMM_WORLD, &

status,ierror)

endif

end

Third Practical

• Sending and receiving a message

• Exercise 1c – see the README file for more details…

40EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Collective Communications (1)

• MPI_SEND/MPI_RECV is pairwise communication

• Often we want to do more complex communication patterns

• For example

– Send the same message from one task to many other tasks

– Receive messages from many tasks onto many other tasks

• We could write this with MPI_SEND & MPI_RECV

– How?

– Why not?

41EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Collective Communications (2)

• MPI contains many Collective Communications routines

– called by all tasks (in a communicator group) together

– replace multiple send/receive calls

– easier to code and understand

– can be more efficient

– the MPI library may optimise the data transfers

• We will look at a small subset of some of the more common colllectives

• The diagrams are schematic

– Help to conceptualise the data movement

– The MPI library and machine hardware may actually be doing a more complex

(and hopefully efficient!) communication pattern

• IFS uses a few collective routines, sometimes we hand code our own

42EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

MPI_BCAST

P0

P1

P2 A B C D

P3

43EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0

P1

P2

P3

P0 P1

P2 P3

MPI_BCAST

MPI_BCAST

P0

P1

P2 A B C D

P3

44EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0 A B C D

P1

P2

P3

P0 P1

P2 P3

MPI_BCAST

A B C D

MPI_BCAST

P0

P1

P2 A B C D

P3

45EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0 A B C D

P1 A B C D

P2

P3

P0 P1

P2 P3

MPI_BCAST

A B C D

MPI_BCAST

P0

P1

P2 A B C D

P3

46EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0 A B C D

P1 A B C D

P2 A B C D

P3

P0 P1

P2 P3

MPI_BCAST

A B C D

MPI_BCAST

P0

P1

P2 A B C D

P3

47EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0 A B C D

P1 A B C D

P2 A B C D

P3 A B C D

P0 P1

P2 P3

MPI_BCAST

A B C D

MPI_BCAST

48EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

FORTRAN_TYPE:: buff

integer:: count, root, ierror

call MPI_BCAST(buff, count, MPI_TYPE, root, &

MPI_COMM_WORLD, ierror)

Argument Description Intent

BUFF The array being broadcast Input/Output

COUNT The number of elements to broadcast Input

MPI_TYPE Type of BUFF (eg. MPI_REAL) Input

ROOT The taskID doing the broadcast Input

MPI_GATHER

49EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0

P1

P2

P3

P0 P1

P2 P3

MPI_GATHER

P0 A

P1 B

P2 C

P3 D

MPI_GATHER

50EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0

P1

P2 A

P3

P0 P1

P2 P3

MPI_GATHER

P0 A

P1 B

P2 C

P3 D

A

MPI_GATHER

51EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0

P1

P2 A B

P3

P0 P1

P2 P3

MPI_GATHER

P0 A

P1 B

P2 C

P3 D

B

MPI_GATHER

52EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0

P1

P2 A B C

P3

P0 P1

P2 P3

MPI_GATHER

P0 A

P1 B

P2 C

P3 D

C

MPI_GATHER

53EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0

P1

P2 A B C D

P3

P0 P1

P2 P3

MPI_GATHER

P0 A

P1 B

P2 C

P3 D

D

MPI_GATHER

54EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

FORTRAN_TYPE:: sbuff,rbuff

integer:: count, root, ierror

call MPI_GATHER(sbuff, scount, send_type, &

rbuff, rcount, receive_type, &

root, MPI_COMM_WORLD, ierror)

Argument Description Intent

SBUFF The array being sent Input

SCOUNT Number of items being sent Input

SEND_TYPE Type of SBUFF (eg. MPI_REAL) Input

RBUFF The array being received Output

RCOUNT The number of elements to receive Input

RECEIVE_TYPE Type of SBUFF (eg. MPI_REAL) Input

ROOT The taskID doing the gather Input

A few variants on MPI_GATHER

• MPI_ALLGATHER

– gather arrays of equal length into one array on all tasks

– Equivalent to doing MPI_GATHER followed by MPI_BCAST

– or doing a MPI_BCAST from each task

• MPI_GATHERV

– gather arrays of different lengths into one array on one task

• MPI_ALLGATHERV

– gather arrays of different lengths into one array on all tasks

• Where do you think these may be useful?

55EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

MPI_ALLGATHER

56EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0

P1

P2

P3

P0 P1

P2 P3

MPI_ALLGATHER

P0 A

P1 B

P2 C

P3 D

MPI_ALLGATHER

57EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0 A

P1 A

P2 A

P3 A

P0 P1

P2 P3

MPI_ALLGATHER

P0 A

P1 B

P2 C

P3 D

A

A

A

A

MPI_ALLGATHER

58EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0 A B

P1 A B

P2 A B

P3 A B

P0 P1

P2 P3

MPI_ALLGATHER

P0 A

P1 B

P2 C

P3 D

B

B

B

B

MPI_ALLGATHER

59EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0 A B C

P1 A B C

P2 A B C

P3 A B C

P0 P1

P2 P3

MPI_ALLGATHER

P0 A

P1 B

P2 C

P3 D

C

C

C

C

MPI_ALLGATHER

60EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0 A B C D

P1 A B C D

P2 A B C D

P3 A B C D

P0 P1

P2 P3

MPI_ALLGATHER

P0 A

P1 B

P2 C

P3 D

D

D

D

D

MPI_ALLGATHER

61EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

FORTRAN_TYPE:: sbuff,rbuff

integer:: count, root, ierror

call MPI_ALLGATHER(sbuff, scount, send_type, &

rbuff, rcount, receive_type, &

MPI_COMM_WORLD, ierror)

Argument Description Intent

SBUFF The array being sent Input

SCOUNT Number of items being sent Input

SEND_TYPE Type of SBUFF (eg. MPI_REAL) Input

RBUFF The array being received Output

RCOUNT The number of elements to receive Input

RECEIVE_TYPE Type of SBUFF (eg. MPI_REAL) Input

Scatter routines

• MPI_SCATTER

– divide one array on one task equally amongst all tasks

– each task receives the same amount of data

– Equivalent putting MPI_SEND in a loop over all tasks

• MPI_SCATTERV

– divide one array on one task unequally amongst all tasks

– each task can receive a different amount of data

• Where do you think they might be useful?

62EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

MPI_SCATTER

63EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0

P1

P2

P3

P0 P1

P2 P3

MPI_SCATTER

P0

P1

P2 A B C D

P3

MPI_SCATTER

64EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0 A

P1

P2

P3

P0 P1

P2 P3

MPI_SCATTER

P0

P1

P2 A B C D

P3

A

MPI_SCATTER

65EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0 A

P1 B

P2

P3

P0 P1

P2 P3

MPI_SCATTER

P0

P1

P2 A B C D

P3

A

B

MPI_SCATTER

66EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0 A

P1 B

P2 C

P3

P0 P1

P2 P3

MPI_SCATTER

P0

P1

P2 A B C D

P3

A

B

C

MPI_SCATTER

67EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0 A

P1 B

P2 C

P3 D

P0 P1

P2 P3

MPI_SCATTER

P0

P1

P2 A B C D

P3

A

B

C D

MPI_SCATTER

68EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

FORTRAN_TYPE:: sbuff,rbuff

integer:: count, root, ierror

call MPI_SCATTER(sbuff, scount, send_type, &

rbuff, rcount, receive_type, &

root,MPI_COMM_WORLD, ierror)

Argument Description Intent

SBUFF The array being sent Input

SCOUNT Number of items being sent Input

SEND_TYPE Type of SBUFF (eg. MPI_REAL) Input

RBUFF The array being received Output

RCOUNT The number of elements to receive Input

RECEIVE_TYPE Type of SBUFF (eg. MPI_REAL) Input

ROOT The taskID doing the gather Input

All to All Routines

• MPI_ALLTOALL

– every task sends equal length parts of an array to all other tasks

– every task receives equal parts from all other tasks

– transpose of data over the tasks

– Equivalent to putting MPI_SEND/MPI_RECV in a loop

• MPI_ALLTOALLV

– as above but parts are different lengths

69EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

MPI_ALLTOALL

70EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0

P1

P2

P3

P0 P1

P2 P3

MPI_ALLTOALL

P0 A0 A1 A2 A3

P1 B0 B1 B2 B3

P2 C0 C1 C2 C3

P3 D0 D1 D2 D3

MPI_ALLTOALL

71EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0 A0

P1 A1

P2 A2

P3 A3

P0 P1

P2 P3

MPI_ALLTOALL

P0 A0 A1 A2 A3

P1 B0 B1 B2 B3

P2 C0 C1 C2 C3

P3 D0 D1 D2 D3

A0

A1

A3

A2

MPI_ALLTOALL

72EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0 A0 B0

P1 A1 B1

P2 A2 B2

P3 A3 B3

P0 P1

P2 P3

MPI_ALLTOALL

P0 A0 A1 A2 A3

P1 B0 B1 B2 B3

P2 C0 C1 C2 C3

P3 D0 D1 D2 D3

B0

B2

B1

B3

MPI_ALLTOALL

73EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0 A0 B0 C0

P1 A1 B1 C1

P2 A2 B2 C2

P3 A3 B3 C3

P0 P1

P2 P3

MPI_ALLTOALL

P0 A0 A1 A2 A3

P1 B0 B1 B2 B3

P2 C0 C1 C2 C3

P3 D0 D1 D2 D3

C3

C1

C2

C0

MPI_ALLTOALL

74EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0 A0 B0 C0 D0

P1 A1 B1 C1 D1

P2 A2 B2 C2 D2

P3 A3 B3 C3 D3

P0 P1

P2 P3

MPI_ALLTOALL

P0 A0 A1 A2 A3

P1 B0 B1 B2 B3

P2 C0 C1 C2 C3

P3 D0 D1 D2 D3

D3

D1

D

D

D0

D2

MPI_ALLTOALL

75EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

FORTRAN_TYPE:: sbuff,rbuff

integer:: count, root, ierror

call MPI_SCATTER(sbuff, scount, send_type, &

rbuff, rcount, receive_type, &

MPI_COMM_WORLD, ierror)

Argument Description Intent

SBUFF The array being sent Input

SCOUNT Number of items being sent Input

SEND_TYPE Type of SBUFF (eg. MPI_REAL) Input

RBUFF The array being received Output

RCOUNT The number of elements to receive Input

RECEIVE_TYPE Type of SBUFF (eg. MPI_REAL) Input

Reduction routines

• Perform both communications and simple maths

– sum, min, max, over a communicator group

• Beware reproducibility

– MPI makes no guarantee of reproducibility

• Eg. Summing an array of real numbers from each task

• May be summed in a different order each time

– You may need to write your own order preserving summation if reproducibility is

important to you.

• MPI_REDUCE

– every task sends data and result is computed on the “root” task

• MPI_ALLREDUCE

– every task sends, result is computed and broadcast back to all tasks.

Equivalent to MPI_REDUCE followed by MPI_BCAST

76EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

MPI_REDUCE (“sum”)

77EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0 P1

P2 P3

MPI_REDUCE

P0

P1

P2

P3

P0 A

P1 B

P2 C

P3 D

MPI_REDUCE (“sum”)

78EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0 P1

P2 P3

MPI_REDUCE

P0

P1

P2 A+B+C+D

P3

P0 A

P1 B

P2 C

P3 D

D

B

C

A

MPI_ALLREDUCE (“sum”)

79EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

P0 P1

P2 P3

MPI_ALLREDUCE

P0 A+B+C+D

P1 A+B+C+D

P2 A+B+C+D

P3 A+B+C+D

P0 A

P1 B

P2 C

P3 D

D

B

C

A A+B+C+D

A+B+C+D

A+B+C+D

MPI_REDUCE

80EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

FORTRAN_TYPE:: sbuff,rbuff

integer:: count, root, ierror

call MPI_REDUCE(sbuff, rbuff, count, MPI_TYPE, &

OP_TYPE, root, MPI_COMM_WORLD, ierror)

Argument Description Intent

SBUFF The array to be reduced Input

RBUFF The result of the reduction Output

COUNT Number of items to be reduced Input

MPI_TYPE Type of SBUFF (eg. MPI_REAL) Input

OP_TYPE Describe the reduction operation required
MPI_MAX, MPI_MIN, MPI_SUM, MPI_IPROD,

MPI_IAND, MPI_BAND, MPI_IOR, MPI_BOR,

MPI_LXOR, MPI_BXOR, MPI_MAXLOC, MPI_MINLOC

Input

Exercise 2

• A simple algorithm to calculate Pi

• You can use MPI_Bcast and MPI_Reduce and maybe others…

81EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Back to “simple” MPI_SEND & MPI_RECV

• What happens after you do MPI_SEND?

– When does the next instruction get executed?

• What happens after you do MPI_RECV?

– When does the next instruction get executed?

• Answer:

– It depends!

82EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Blocking vs Non-blocking Communications

• Blocking communication

– Call to MPI “sending” routine does not return until the “send” buffer (array) is

safe to use again

• This does not necessarily mean the data has been sent and received by the remote

task (although it might!)

– Call to MPI “receiving” routine does not return until the “receive” buffer has

received all the data in the incoming message

• Non-blocking communication

– Call to MPI routine returns immediately

– Further MPI calls are required to check the progress of the communication

– Allows other work to be done during communication

• Cray’s MPI_SEND can sometimes be blocking and sometimes non-blocking!

– The MPI standard doesn’t mandate whether MPI_SEND should be blocking or

not

– Two different behaviours, dependent on the message length…

83EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

MPI_SEND : Eager protocol

84EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Sender Receiver

MPI_SEND(send_array)

send_array

MPI

MPI mailbox

recv_array

MPI

MPI mailbox

MPI_SEND completes

when “send_array” is

copied into the MPI

mailbox on the sending

task

MPI_SEND : Eager Protocol

• The MPI layer has copied the data elsewhere

– using internal buffer/mailbox space on the sending task

• MPI_SEND returns as soon as the message has been copied

– The message is then “in transit” but not necessarily in the receivers array

• Used for short messages

– By default “short” is 8192 bytes (8Kb) on the Cray

– Can be modified by environment variable

• $ export MPICH_GNI_MAX_EAGER_MSG_SIZE=X (bytes)

• Maximum permitted value 131072 bytes (128Kb)

• No need to worry if the remote task has done an “MPI_RECEIVE”

– This is a non-blocking protocol

85EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

MPI_SEND : Rendezvous protocol

86EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Sender Receiver

MPI_SEND(send_array)

send_array

MPI

MPI mailbox

recv_array

MPI

MPI mailbox

MPI_SEND completes

when “send_array” is

copied into
“recv_array” on the

receiving task

MPI_SEND : Rendezvous Protocol

• MPI_SEND does not return until the message has been successfully

received by the remote task

• Used for long messages

– By default “long” is >8192 bytes on the Cray

• Need to ensure that remote task is doing an “MPI_RECEIVE” otherwise we

may deadlock…

– Easily done!

– eg. ping-pong example – 2 tasks exchanging messages…

87EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

if(me .eq.0) then

other=1

else

other=0

endif

call MPI_SEND(sbuff,n,MPI_REAL8,other,tag,MPI_COMM_WORLD,ierror)

call MPI_RECV(rbuff,n,MPI_REAL8,other,tag,MPI_COMM_WORLD,stat,ierror)

Solutions to Send/Send deadlocks

• Best advice – avoid MPI_SEND/MPI_RECV!

– Behaviour is implementation dependent – code may work, but then stop working

when message size changes or move to another platform

• Pair up sends and receives (next slide shows how…)

– But this is not very efficient

• Use MPI_SENDRECV

– Hopefully more efficient

• Use a buffered send (like the eager protocol, but user space buffering)

– MPI_BSEND

• Use asynchronous sends/receives (recommended)

– MPI_ISEND or MPI_IRECV

88EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Paired Sends and Receives

• More complex code, and close synchronisation

• Less efficient

– task 1 has to wait until it has received message from task 0 before it can send

its message

89EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

if (me .eq. 0) then

other=1

call MPI_SEND(sbuff,n,MPI_REAL8,other,tag,MPI_COMM_WORLD,ierror)

call MPI_RECV(rbuff,n,MPI_REAL8,other,tag,MPI_COMM_WORLD,stat,ierror)

else

other=0

call MPI_RECV(rbuff,n,MPI_REAL8,other,tag,MPI_COMM_WORLD,stat,ierror)

call MPI_SEND(sbuff,n,MPI_REAL8,other,tag,MPI_COMM_WORLD,ierror)

endif

1

2

3

4

5

task0

task1

1

3 4

2 5

5

time

MPI_SENDRECV

• Simpler to code & hopefully more efficient

• Still implies close synchronisation

90EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

call MPI_SENDRECV(sbuff,n,MPI_REAL8,other,1, &

rbuff,n,MPI_REAL8,other,1, &

MPI_COMM_WORLD,stat,ierror)

1

2

1

1

time

2

2

task0

task1

MPI_BSEND

• This performs a send using an additional buffer

– the buffer is allocated by the program via MPI_BUFFER_ATTACH

– done once as part of the program initialisation

– MPI_BSEND completes as soon as message is copied into buffer

• Typically quick to implement

– add the MPI_BUFFER_ATTACH call

• how big to make the buffer?

– change MPI_SEND to MPI_BSEND everywhere

• But introduces additional memory copy

– extra overhead

– not recommended for production codes

– One day your buffer won’t be big enough!

91EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

MPI_IRECV & MPI_ISEND

• Uses Non Blocking Communications

• “I” stands for immediate

– the call returns immediately

• Routines return without completing the operation

– the operations run asynchronously (in the background)

– Must NOT reuse the buffer (send/receive array) until safe to do so

• Later test that the operation completed

– via an integer identification handle “request” passed to MPI_WAIT

• Alternatively could have used MPI_ISEND and MPI_RECV

92EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

call MPI_IRECV(rbuff,n,MPI_REAL8,other,1,MPI_COMM_WORLD,request,ierror)

call MPI_SEND (sbuff,n,MPI_REAL8,other,1,MPI_COMM_WORLD,ierror)

call MPI_WAIT(request,stat,ierr)

Non blocking communications

• Routines include

– MPI_ISEND

– MPI_IRECV

– MPI_WAIT

– MPI_WAITALL

• Waits for a number of outstanding communications to complete

– And many, many others!

• See the documentation

93EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

Final Practical

• exercise3

• A “simple” numerical model

• See the README for details

• Use the links to external documentation for details of the arguments

required for various MPI routines you might want to use

• Ask if you need help or don’t understand anything!

94EUROPEAN CENTRE FOR MEDIUM-RANGE WEATHER FORECASTS

