ecRad radiation scheme: User Guide

Robin J. Hogan European Centre for Medium Range Weather Forecasts, Reading, UK

Document version 1.2.0 (October 2019) applicable to ecRad version 1.2.x

This document is copyright © European Centre for Medium Range Weather Forecasts 2019. If you have any queries about *ecRad* that are not answered by this document or by the information on the *ecRad* web site (https://confluence.ecmwf.int/display/ECRAD) then please email me at r.j.hogan@ecmwf.int.

Contents

1	Introduction		2
		What is <i>ecRad</i> ?	
	1.2	License	2
	1.3	Overview of this document	2
2	Usin	g the offline radiation scheme	3
	2.1	Compiling the package	3
	2.2	Running the offline radiation scheme	4
	2.3	Configuring the radiation scheme	7
	2.4	Configuring the offline package	10
	2.5	Describing cloud structure	10
		Checking the configuration	
3	Inco	prporating <i>ecRad</i> into another program	14

Chapter 1

Introduction

1.1 What is *ecRad*?

ecRad is an atmospheric radiation scheme designed for computing profiles of solar (or *shortwave*) and thermal infrared (or *longwave*) irradiances from the surface up to the middle mesosphere. It is incorporated into the Integrated Forecasting System (IFS), the weather forecast model used operationally by the European Centre for Medium-Range Weather Forecasts (ECMWF), in which it is used to compute radiative heating and cooling rates of the atmosphere and surface. An offline version of the scheme is available for educational and non-commercial research use only.

A scientific overview of *ecRad* was provided by Hogan and Bozzo (2018). It incorporates the Rapid Radiative Transfer Model for GCMs (RRTMG; Iacono et al., 2008) for representing absorption by atmospheric gases and a flexible treatment of the optical properties of aerosol particles. Three different solvers capable of representing the effects of subgrid cloud structure are available: McICA (Pincus et al., 2003), Tripleclouds (Shonk and Hogan, 2008) and SPARTACUS (Hogan et al., 2016). It is coded in Fortran 2003 in a way that is efficient and flexible.

1.2 License

The Meteorological Services of ECMWF Member States are permitted to use *ecRad* (along with any IFS software) for any in-house purpose. Other researchers may apply for an institutional license to use the software, as described on the *ecRad* web site*. The license is the same as for the OpenIFS software and permits educational and non-commercial research use only, and prohibits redistribution. The full terms of the license are available on the *ecRad* web site.

1.3 Overview of this document

Chapter 2 describes how to compile and use the offline version of *ecRad*, which is essentially a Unix program that reads a configuration file and a NetCDF file containing a description of the atmospheric state, and outputs a NetCDF file containing the computed irradiance profiles. Chapter 3 describes how to incorporate *ecRad* into a larger Fortran program, such as an atmospheric model. At some future date this document will be expanded to include chapters describing the internal architecture and the detailed scientific documentation.

^{*}https://confluence.ecmwf.int/display/ECRAD

Chapter 2

Using the offline radiation scheme

2.1 Compiling the package

The offline version of *ecRad* is designed to be used on a Unix-like platform. You will need a Fortran compiler that supports the 2003 standard, such as gfortran. As a prerequisite, you will need to install the NetCDF library, including the Fortran interface (packages to install on a Linux system are typically called libnetcdff-dev or libnetcdff-devel). To run some of the tests, you will also need to install the NCO utilities for manipulating NetCDF Files.

First unpack the package and enter the subdirectory as follows:

tar xvfz ecrad-1.2.0.tar.gz
cd ecrad-1.2.0

On a non-GNU platform you may need to untar and unzip the package using the tar and gunzip commands separately. The README file contains concise instructions on compilation and testing, while the NOTICE file outlines the license conditions. The subdirectories are as follows:

radiation The ecRad souce code for atmospheric radiation

- **radsurf** Incomplete source code for radiation interactions with complex surfaces; this will probably be removed as a separate package is being developed
- ifsaux Source code providing a (sometimes dummy) IFS environment
- ifsrrtm The IFS implementation of the RRTMG gas optics scheme
- utilities Source code for useful utilities, such as reading NetCDF files
- driver The source code for the offline driver program ecrad
- **ifs** Source files from the IFS that are used to illustrate how *ecRad* can be incorporated into a large model, but note that these files are not used in the offline version
- mod Where Fortran module files are written
- lib Where the static libraries are written
- bin Where the executable ecrad is written
- data Contains configuration data files read at run-time
- test Test cases including Matlab code to plot the outputs
- include Automatically generated interface blocks for non-module routines

Compilation on different platforms using different compilers is facilitated by the various Makefile_include.<prof> files in the top-level directory: if you type

make

or

make PROFILE=gfortran

the code will be compiled using the gfortran compiler via the Makefile variables set in the Makefile_include.gfortran file. Using instead PROFILE=pgi will use the Makefile_include.pgi file to attempt to compile with the PGI compiler. If everything goes to plan this should create the executable bin/ecrad and various static libraries in the lib directory.

One common reason the code doesn't compile out of the box is that it can't find the NetCDF library files. Since version 1.2.0, the *ecRad* Makefile uses the nf-config script that comes with recent versions of the NetCDF library to create the Makefile variables NETCDF_INCLUDE and NETCDF_LIB. If nf-config is not available on your system, or it fails to correctly locate the NetCDF library files, then the cleanest way to fix this is to create a Makefile_include.local file that defines NETCDF_INCLUDE and NETCDF_LIB explicity to contain arguments for the compile and link operations, respectively. Suppose you installed NetCDF in /path/to/netcdf and you use the gfortran compiler then your file might contain:

```
include Makefile_include.gfortran
NETCDF = /path/to/netcdf
NETCDF_INCLUDE = -I$(NETCDF)/include
NETCDF_LIB = -L$(NETCDF)/lib -lnetcdff -lnetcdf -Wl,-rpath,$(NETCDF)/lib
```

You should then be able to build the code with

make PROFILE=local

Examples of such configurations for the ECMWF and University of Reading computer systems may be found in Makefile_include.ecmwf and Makefile_include.uor.

To compile in single precision, type

make PROFILE=gfortran SINGLE_PRECISION=1

To compile with debugging options (no optimization, bounds checking and initializing real numbers with not-anumber), type

make PROFILE=gfortran DEBUG=1

Finer tuning may be achieved by specifying the optimization and debugging flags explicitly, for example

make PROFILE=gfortran OPTFLAGS="-O1" DEBUGFLAGS="-g1 -pg"

Remember that if you change the compile settings you will probably want to recompile everything, in which case you first need to remove all compiled files with

make clean

2.2 Running the offline radiation scheme

To test the code, type

make test

which runs make in each of the subdirectories of the test directory. The README files in these directories provide more information on what they are doing, and some Matlab scripts are provided to visualize the outputs.

You will see in the output of the tests the command line in each invocation of *ecRad*, which is of the form

ecrad config.nam input.nc output.nc

where ecrad needs to be the full path to the *ecRad* executable, config.nam is a Fortran namelist file configuring the code, input.nc contains the input atmospheric profiles and output.nc contains the output irradiance (flux) profiles. The namelist file contains a radiation namelist that configures the *ecRad* scheme itself; the parameters available are described in section 2.3. The file also contains a radiation_config namelist that configures aspects of the offline package, described in section 2.4. Only the radiation namelist is used when *ecRad* is incorporated into an atmospheric model.

The input NetCDF file contains numerous floating-point variables listed in Table 2.1. The dimensions are shown in the order that they are listed by the ncdump utility, with the first dimension varying slowest in the file (opposite to the Fortran convention). Most variables are stored as a function of column and level (dimensions named col and level in Table 2.1, although the actual dimension names are ignored by *ecRad*). The half_level dimension corresponds to the mid-points of the levels, plus the top-of-atmosphere and surface, and so must be one more than level. The level_interface dimension excludes the top-of-atmosphere and surface so must be one less than level. The optional sw_albedo_band and lw_emiss_band dimensions allow for shortwave albedo and longwave emissivity to be specified in user-defined spectral intervals. Some variables can be omitted in which case default values will be used or these fields will be constructed according to radiation_config namelist parameters (section 2.4).

Table 2.1: Main variables contained in the input NetCDF file to *ecRad*. Note that some variables are not required if they are not used by the particular solver selected, for example iseed is only used by the McICA solver and inv_cloud_effective_size is only used by the SPARTACUS solver. Also, only one of o3_mmr and o3_vmr should be provided. In addition to ozone, further gases can be specified in either mass mixing ratio (suffix _mmr) or volume mixing ratio (suffix _vmr) units, where the prefixes are co2 (carbon dioxide), n20 (nitrous oxide), co (carbon monoxide), ch4 (methane), o2 (molecular oxygen), cfcll (CFC-11), cfcl2 (CFC-12), hcfc22 (HCFC-22), ccl4 (carbon tetrachloride) and no2 (nitrogen dioxide). These further trace gases may either be specified as variable in space (dimensioned col, level) or constant (a scalar value in the file). To override the suffix indicating volume mixing ratio (e.g. to change it to _mole_fraction), set the namelist variable vmr_suffix_str as described in Table 2.4.

Variable	Dimensions	Description
solar_irradiance	-	Solar irradiance at Earth's orbit (W m ⁻²)
skin_temperature	col	Skin temperature (K)
cos_solar_zenith_angle	col	Cosine of solar zenith angle
sw_albedo	col, sw_albedo_band	Shortwave albedo (if 1D then assumed spectrally constant)
lw_emissivity	col, lw_emiss_band	Longwave emissivity (if 1D then assumed spectrally constant)
iseed	col	Seed for McICA random-number generator (double precision, default: 1, 2, 3)
pressure_hl	col, half_level	Pressure at half levels (Pa)
temperature_hl	col, half_level	Temperature at half levels (K)
q or h2o_mmr	col, level	Specific humidity (kg kg ⁻¹)
h2o_vmr	col, level	Water vapour volume mixing ratio (mol mol ^{-1})
o3_mmr	col, level	Ozone mass mixing ratio (kg kg $^{-1}$)
o3_vmr	col, level	Ozone volume mixing ratio (mol mol ⁻¹), used only if o3_mmr not provided
aerosol_mmr	col, aer_type, level	Aerosol mass mixing ratio (kg kg $^{-1}$)
q_liquid	col, level	Liquid cloud mass mixing ratio (kg kg $^{-1}$)
q_ice	col, level	Ice cloud mass mixing ratio (kg kg $^{-1}$)
re_liquid	col, level	Liquid cloud effective radius (m)
re_ice	col, level	Ice cloud effective radius (m)
cloud_fraction	col, level	Cloud fraction
overlap_param	col, level_interface	Cloud overlap parameter (default: compute from decorrelation length of 2 km)
fractional_std	col, level	Fractional standard deviation of cloud optical depth (default 0)
inv_cloud_effective_size	col, level	Inverse of cloud effective horizontal size for SPARTACUS solver (m^{-1})

inv_inhom_effective_size	col, level	Inverse of effective horizontal size of cloud
		inhomogeneities, for SPARTACUS solver (m^{-1})
		(default: same as inv_cloud_effective_size)
inv_cloud_effective_separation	col, level	Alternative input to SPARTACUS if
		inv_cloud_effective_size not present (m^{-1})
inv_inhom_effective_separation	col, level	Alternative input to SPARTACUS if
		$inv_inhom_effective_size$ not present (m^{-1})

All the test data store input fields in order of increasing pressure, i.e. starting at the top-of-atmosphere and working down to the surface. The output data are then provided using the same convention. If input data are provided in the opposite order then this should be automatically detected and under the bonnet the order is reversed before being passed to the radiation scheme. But if you use this convention then please test the results carefully as this option is not regularly tested. The variables describing cloud properties, particularly sub-grid cloud struture, are defined in detail in section 2.5.

The output NetCDF file contains the typical set of variables listed in Table 2.2. Clear-sky fluxes (i.e. computed on the same input profiles but in the absence of clouds) are provided if the do_clear namelist parameter is set to true (see section 2.3). If you need diagnostic downward fluxes at the surface for just a subset of the spectrum (e.g. ultraviolet or photosynthetically active radiation) then they can be computed from the spectral_flux_dn_* variables, activated if namelist variable do_surface_sw_spectral_flux is set to true. In some contexts it is also useful to have fluxes in each of the shortwave albedo or longwave emissivity spectral intervals. These are named canopy_flux_dn_* and are activated if do_canopy_fluxes_sw or do_canopy_fluxes_lw are set to true. Note that if you want atmospheric heating rates then you will need to compute them yourself from the flux profiles.

Table 2.2: Variables contained in the output NetCDF file from *ecRad*, where all fluxes (or irradiances) have units of W m⁻². The band_sw dimension has the same size as the number of shortwave bands in the gas-optics scheme.

Variable	Dimensions	Description
pressure_hl	col, half_level	Pressure at half levels (Pa)
flux_up_sw, flux_dn_sw	col, half_level	Up- and downwelling shortwave fluxes
flux_up_sw_clear, flux_dn_sw_clear	col, half_level	Up- and downwelling clear-sky shortwave fluxes
flux_dn_direct_sw	col, half_level	Direct component of downwelling shortwave flux
flux_dn_direct_sw_clear	col, half_level	Direct component of downwelling clear-sky shortwave flux
flux_up_lw, flux_dn_lw	col, half_level	Up- and down-welling longwave fluxes
flux_up_lw_clear, flux_dn_lw_clear	col, half_level	Up- and down-welling clear-sky longwave fluxes
lw_derivative	col, half_level	Derivative of upwelling longwave flux with respect to surface value (Hogan and Bozzo, 2015)
<pre>spectral_flux_dn_sw_surf</pre>	col, band_sw	Downwelling surface shortwave flux in each band
<pre>spectral_flux_dn_direct_sw_surf</pre>	col, band_sw	Direct downwelling surface shortwave flux in each band
<pre>spectral_flux_dn_sw_surf_clear</pre>	col, band_sw	Clear-sky downwelling surface shortwave flux in each band
<pre>spectral_flux_dn_direct_sw_surf_clear</pre>	col, band_sw	Clear-sky direct downwelling surface shortwave flux in each band
canopy_flux_dn_diffuse_sw_surf	col, sw_albedo_band	Downwelling diffuse surface shortwave flux in each albedo interval
canopy_flux_dn_direct_sw_surf	col, sw_albedo_band	Downwelling direct surface shortwave flux in each albedo interval
<pre>canopy_flux_dn_lw_surf</pre>	col, lw_emiss_band	Downwelling surface longwave flux in each emissivity interval
cloud_cover_sw	col	Total cloud cover diagnosed by shortwave solver
cloud_cover_lw	col	Total cloud cover diagnosed by longwave solver

2.3 Configuring the radiation scheme

The detailed settings of *ecRad* are configured using the radiation namelist in the namelist file provided as the first command-line argument to the ecrad executable. The available namelist parameters are listed in Table 2.3. One of the most important is directory_name, which provides the absolute or relative path to the directory containing all the configuration files. This is the data directory at the top level of the *ecRad* package. Note that the default values listed in Table 2.3 may differ in some cases from the values used operationally in the IFS (see Table 2 of Hogan and Bozzo, 2018).

Table 2.3: Options for the radiation namelist that configures the radiation scheme. The type of each parameter can be inferred from its name: logicals begin with do_ or use_, integers start with i_ or n_, strings end with _name, and all other parameters are real numbers.

Parameter	Default value, other values	Description
General		
directory_name		Directory containing NetCDF configuration files
do_sw	true	Compute shortwave fluxes?
do_lw	true	Compute longwave fluxes?
do_sw_direct	true	Do direct shortwave fluxes?
do_clear	true	Compute clear-sky fluxes?
Gas and aerosol optics		* *
gas_model_name	RRTMG-IFS,	Gas optics model
	Monochromatic	*
use_aerosols	false	Do we represent aerosols?
_ do_lw_aerosol_scattering	true	Do longwave aerosol scattering?
n_aerosol_types		Number of aerosol types
i_aerosol_type_map		Vector of integers that map from aerosol types to
		types in the NetCDF aerosol optics file, where
		positive integers indexe hydrophobic types,
		negative integers index hydrophilic types,
		indicates a type should be ignored
aerosol_optics_override_file_name		Path to an alternative aerosol optics file
Monochromatic scheme		Tail to an alternative acrosol optics life
mono_lw_wavelength	-1.0	Wavelength of longwave radiation, or if negative, a
mono_iw_waverengen	-1.0	
	0.0	broadband calculation will be performed
mono_lw_total_od	0.0	Zenith longwave optical depth of clear-sky atmosphere
mono_sw_total_od	0.0	Zenith shortwave optical depth of clear-sky
		atmosphere
<pre>mono_lw_single_scattering_albedo</pre>	0.538	Longwave cloud single scattering albedo
<pre>mono_sw_single_scattering_albedo</pre>	0.999999	Shortwave cloud single scattering albedo
mono_lw_asymmetry_factor	0.925	Longwave cloud asymmetry factor
mono_sw_asymmetry_factor	0.86	Shortwave cloud asymmetry factor
Cloud optics		
liquid_model_name	SOCRATES, Slingo,	Liquid optics model, including the scheme in the
	Monochromatic	SOCRATES radiation scheme and the older
		scheme of Slingo (1989)
ice_model_name	Fu-IFS, Baran2016, Yi,	Ice optics model, including the schemes of Fu
	Monochromatic	(1996), Fu et al. (1998), Baran et al. (2016) and
	Wohoemomate	Yi et al. (2013)
do_lw_cloud_scattering	true	Do longwave cloud scattering?
do_fu_lw_ice_optics_bug	false	Reproduce bug in McRad implementation of Fu ice
do_ru_rw_rce_optres_bug	Tatse	
lig option overside file serve		optics (Hogan et al., 2016)? Both to alternative liquid antice file name
liq_optics_override_file_name		Path to alternative liquid optics file name
ice_optics_override_file_name		Path to alternative ice optics file name
Solver		
sw_solver_name	Cloudless, Homogeneous,	Shortwave solver; note that the homogeneous solver
	McICA, Tripleclouds,	assumes cloud fills the gridbox horizontally (so
	SPARTACUS	ignores cloud fraction) while the cloudless solver
		ignores clouds completely

lw_solver_name	Cloudless, Homogeneous, McICA, Tripleclouds, SPARTACUS	Longwave solver
overlap_scheme_name	Max-Ran, Exp-Ran , Exp-Exp	Cloud overlap scheme; note that SPARTACUS and Tripleclouds only work with the Exp-Ran overlap scheme
use_beta_overlap	false	Use Shonk et al. (2010) ' β ' overlap parameter definition, rather than default ' α '?
cloud_inhom_decorr_scaling	0.5	Ratio of overlap decorrelation lengths for cloud inhomogeneities and boundaries
cloud_fraction_threshold	10^{-6}	Ignore clouds with fraction below this
	10^{-9}	0
cloud_mixing_ratio_threshold		Ignore clouds with total mixing ratio below this
cloud_pdf_shape_name	Gamma, Lognormal	Shape of cloud water PDF
<pre>cloud_pdf_override_file_name</pre>		Name of NetCDF file of alternative cloud PDF look-up table
do_sw_delta_scaling_with_gases	false	Apply delta-Eddington scaling to particle-gas mixture, rather than particles only (see Hogan and Bozzo, 2018)
SPARTACUS solver (these parameters have no effect f	for other solvers)	
do_3d_effects	true	Represent cloud edge effects when SPARTACUS
		solver selected; note that this option does not affect entrapment, which is also a 3D effect
n_regions	2, 3	Number of regions, where one is clear sky and one or two are cloud (the Tripleclouds solver always
do_lw_side_emissivity	true	assumes three regions regardless of this parameter) Represent effective emissivity of the side of clouds (Schäfer et al., 2016)
sw_entrapment_name	Zero, Edge-only, Explicit , Non-fractal, Maximum	Entrapment model (Hogan et al., 2019); note that the behaviour in ecRad version 1.0.1 was 'Maximum' entrapment
do_3d_lw_multilayer_effects	false	Maximum entrapment for longwave radiation?
max_3d_transfer_rate	10.0	Maximum rate of lateral exchange between regions in one layer, for stability of matrix exponential (where the default means that as little as e^{-10} of the radiation could remain in a region)
max_gas_od_3d	8.0	3D effects ignored for spectral intervals where gas optical depth of a layer exceeds this, for stability
max_cloud_od	16.0	Maximum in-cloud optical depth, for stability
use_expm_everywhere	false	Use matrix-exponential method even when 3D effects not important, such as clear-sky layers and parts of the spectrum where the gas optical depth is large?
<pre>clear_to_thick_fraction</pre>	0.0	Fraction of cloud edge interfacing directly to the most optically thick cloudy region
overhead_sun_factor	0.0	Minimum tan-squared of solar zenith angle to allow some 'direct' radiation from overhead sun to pass through cloud sides (0.06 used by Hogan et al., 2016)
overhang_factor	0.0	A detail of the entrapment representation described by Hogan et al. (2019)
Surface		
do_nearest_spectral_sw_albedo	true	Surface shortwave albedos may be supplied in their own spectral intervals: do we select the nearest to each band of the gas optics scheme, rather than using a weighted average?
<pre>do_nearest_spectral_lw_emiss sw_albedo_wavelength_bound</pre>	true	likewise but for surface longwave emissivity Vector of the wavelength bounds (m) delimiting the shortwave albedo intervals
lw_emiss_wavelength_bound		Vector of the wavelength bounds (m) delimiting the longwave emissivity intervals
i_sw_albedo_index		Vector of indices mapping albedos to wavelength intervals
i_lw_emiss_index		Vector of indices mapping emissivities to wavelength intervals
Diagnostics		

iverbosesetup	0, 1, 2, 3 , 4, 5	Verbosity in setup, where 1=warning, 2=info, 3=progress, 4=detailed, 5=debug
iverbose	0, 1, 2, 3, 4, 5	Verbosity in execution
do_save_spectral_flux	false	Save flux profiles in each band?
do_save_gpoint_flux	false	Save flux profiles in each g-point?
<pre>do_surface_sw_spectral_flux</pre>	true	Save surface shortwave fluxes in each band for subsequent diagnostics?
<pre>do_lw_derivatives</pre>	false	Compute derivatives for Hogan and Bozzo (2015) approximate updates?
<pre>do_save_radiative_properties</pre>	false	Write intermediate NetCDF file(s) of properties sent to solver (radiative_properties*.nc)?
do_canopy_fluxes_sw	false	Save surface shortwave fluxes in each albedo interval
do_canopy_fluxes_lw	false	Save surface longwave fluxes in each emissivity
		interval

Several of the entries in Table 2.3 are configured with vectors of numbers, which deserves further explanation. As shown in Table 2.1, aerosols are provided to *ecRad* in the form of the mass mixing ratios of a number of different aerosol types. The optical properties of an arbitrary number of hydrophilic and hydrophobic aerosol types is provided in a NetCDF file, for example data/aerosol_ifs_rrtm_45R2.nc in the *ecRad* package. The mapping between the input aerosol concentrations and the aerosol types in the optical-property file may be specified in the radiation namelist. The n_aerosol_types parameter specifies the number of aerosol concentrations to be provided, with a value of zero having the effect of deactivating aerosols. i_aerosol_type_map is a vector of integers of length n_aerosol_types, whose optical properties vary with relative humidity, while postitive numbers select hydrophilic types. Zero indicates that an input aerosol type is to be ignored. As an example, the IFS settings (in the test/ifs directory) are specified with:

```
aerosol_optics_override_file_name = 'aerosol_ifs_rrtm_46R1_with_NI_AM.nc'
n_aerosol_types = 12
i_aerosol_type_map = -1, -2, -3, 1, 2, 3, -4, 10, 11, 11, -5, 14
```

When *ecRad* is run, the output printed to the terminal includes a description of the aerosol mapping.

A similar mechanism is used to describe how spectral intervals of the input sw_albedo and $lw_emissivity$ should be interpretted. This is best explained by considering the configuration of the IFS in Cycle 47R1, which is described by the following namelist variables:

```
sw_albedo_wavelength_bound(1:5) = 0.25e-6, 0.44e-6, 0.69e-6, 1.19e-6, 2.38e-6
i_sw_albedo_index(1:6) = 1,2,3,4,5,6
do_nearest_spectral_sw_albedo = false
lw_emiss_wavelength_bound(1:2) = 8.0e-6, 13.0e-6
i_lw_emiss_index(1:3) = 1,2,1
do_nearest_spectral_lw_emiss = true
```

The IFS describes surface albedo in six spectral intervals. The vector sw_albedo_wavelength_bounds here provides the wavelengths, in metres, of the five boundaries between these intervals, where the first interval is taken to include all wavelengths shorter than the first value (in this case 0.25 μ m) and the last includes all wavelengths longer than the last value (in this case 2.38 μ m). The vector i_sw_albedo_index specifies which of the elements of the input sw_albedo field should be used in each of the six spectral intervals. Surface emissivity is described similarly: there are three spectral intervals specified by the two boundaries in lw_emiss_wavelength_bound. The corresponding vector i_lw_emiss_index contains two occurrences of the index 1, indicating that the first element of lw_emissivity is used both for wavelengths smaller than 8 μ m and wavelengths larger than 13 μ m (i.e. outside the infrared atmospheric window). The second element is then used for wavelengths between these two boundaries. Thus even though there are three spectral_sw_albedo and do_nearest_spectral_lw_emiss specify whether the bands of the gas optics scheme used in *ecRad* will use a single value of albedo or emissivity from the input fields (chosen to be the spectral interval with the largest overlap in wavenumber space with each band of the gas-optics scheme), or whether they will weight the spectral intervals

by their overlap with each band of the gas-optics scheme. The mapping from spectral interval to band is printed on standard output when *ecRad* is run, as shown in the example in section 2.6.

2.4 Configuring the offline package

In addition to the namelist parameters described in section 2.3 an additional set of parameters are available in the radiation_config namelist that are specific to the offline version of *ecRad* and are listed in Table 2.4. In general if these parameters are present in the namelist then they will override the corresponding variable provided in the input file.

Table 2.4: Options for the radiation_config namelist that configures additional aspects of the offline radiation scheme. All entries must be scalars. If an override parameter is present then it need not be included in the input file. The cloud effective sizes (used by the SPARTACUS solver) may be specified for low, middle and high clouds according to the cloud layer pressure p and the surface pressure p_0 .

Parameter	Description
Execution control	
nrepeat	Number of times to repeat, for benchmarking
istartcol	Start at specified input column (1 based)
iendcol	End at specified input column (1 based)
iverbose	Verbosity in offline setup (default 2)
do_parallel	Use OpenMP parallelism? (default true)
nblocksize	Number of columns per block when using OpenMP
do_save_inputs	Sanity check: save input variables in inputs.nc
do_correct_unphysical_inputs	If input variables out of physical bounds, correct them and issue a warning
vmr_suffix_str	Suffix for variables containing volume mixing ratios (default '_vmr')
Override input variables	
solar_irradiance_override	Override solar irradiance (W m^{-2})
skin_temperature	Override skin temperature (K)
cos_solar_zenith_angle	Override cosine of solar zenith angle
sw_albedo	Override shortwave albedo
lw_emissivity	Override longwave emissivity
fractional_std	Override cloud optical depth fractional standard deviation
overlap_decorr_length	Override cloud overlap decorrelation length (m)
inv_effective_size	Override inverse of cloud effective size (m^{-1})
low_inv_effective_size	for low clouds ($p > 0.8p_0$, where p is pressure and p_0 surface pressure)
middle_inv_effective_size	for mid-level clouds $(0.45p_0$
high_inv_effective_size	for high clouds ($p \le 0.45 p_0$)
Scale input variables	
q_liquid_scaling	Scaling for liquid water mixing ratio
q_ice_scaling	Scaling for ice water mixing ratio
cloud_fraction_scaling	Scaling for cloud fraction (capped at 1)
overlap_decorr_length_scaling	Scaling for cloud overlap decorrelation length
effective_size_scaling	Scaling for cloud effective size
h2o_scaling, co2_scaling	Scaling for specific humidity and carbon dioxide; equivalents available for
	o3, co, ch4, n2o, o2, cfc11, cfc12, hcfc22 and cc14
Parameterize input variables	
cloud_inhom_separation_factor	Set inhomogeneity separation scale to be this multiplied by cloud separation scale
cloud_separation_scale_surface	Surface cloud separation scale in pressure-dependent parameterization
cloud_separation_scale_toa	Top-of-atmosphere cloud separation scale in pressure-dependent parameterization
cloud_separation_scale_power	Power in cloud separation scale parameterization

2.5 Describing cloud structure

Probably more than any other 1D radiation scheme, *ecRad* allows the user to define in detail the statistical properties of the sub-grid cloud distribution, and in this section the relevant variables and namelist parameters are

explained in more detail. In an operational context most of these variables need to be parameterized, but in developing new solvers we need to perform explicit radiation calculations on realistic high resolution 3D cloud fields, and compare them to *ecRad* simulations in which the profiles of these variables have been extracted from the 3D cloud fields. This has been done by Schäfer et al. (2016), Hogan et al. (2016) and Hogan et al. (2019). Explicit radiation calculations on a 3D cloud field can either be performed using the Independent Column Approximation (ICA) and compared to *ecRad*'s McICA or Tripleclouds solvers, or using a fully 3D solver (e.g. Monte Carlo) and comparing it to *ecRad*'s SPARTACUS solver. Note that *ecRad* can itself perform ICA calculations on 3D cloud fields, by flattening the two horizontal dimensions of a 3D dataset into a single 'column' dimension, and using the *ecRad*'s 'Homogeneous' solver in which any cloud is assumed to homogeneously fill each of the narrow columns (so cloud fraction is not used as it is implicitly taken to be 0 or 1).

The input variables describing the profile of cloud properties are given in the lower half of Table 2.1. The most basic are the liquid and ice mass mixing ratios (q_liquid and q_ice), which are gridbox-mean quantities, and the corresponding effective radii (re_liquid and re_ice). Effective radius is assumed to be horizontally constant within a gridbox, even if the water content varies. For all cloud optics models, effective radius is defined as

$$r_{e,\text{liq}} = \frac{3\text{LWC}}{4\rho_{\text{liq}}A_{\text{liq}}};$$
(2.1)

$$r_{e,\text{ice}} = \frac{31\text{WC}}{4\rho_{\text{ice}}A_{\text{ice}}},\tag{2.2}$$

where LWC and IWC are the liquid and ice water contents (i.e. the mass mixing ratios multiplied by the air density), ρ_{liq} and ρ_{ice} are the densities of liquid water and solid ice, and A_{liq} and A_{ice} are the total projected cross-sectional areas of liquid droplets and ice particles per unit volume of air (so units of m⁻¹).

Cloud fraction is simply the fractional horizontal area of a given model layer that contains cloud. The layers are assumed to be thin enough that cloud fraction is constant with height within a layer, i.e. cloud fraction by volume is equal to cloud fraction by area. The horizontal variability of cloud water content in a layer is specified by the fractional standard deviation (fractional_std), defined as the standard deviation of the in-cloud water content, divided by the in-cloud mean water content. The in-cloud mean water content is the gridbox-mean water content divided by cloud fraction. Note that since effective radius is assumed constant across a gridbox, cloud optical depth is proportional to water path and so fractional_std can also be thought of as the horizontal fractional standard deviation of cloud optical depth. Moreover, *ecRad* assumes that horizontal variations of liquid and ice water content are perfectly correlated. As shown in Table 2.4, fractional standard deviation can be overriden through a namelist parameter; for example, in the IFS this value is set to 1.

Cloud overlap is needed by the Exp-Ran and Exp-Exp overlap schemes, and is specified at the interface (or half-level) between each layer by overlap_param, the overlap parameter as defined by Hogan and Illingworth (2000). To compute this at half-level i + 1/2 of a high-resolution 3D cloud field, you need the cloud fractions in the upper and lower lower layers, c_i and c_{i+1} , and the combined cloud cover of the cloud in these two layers, *C*. Then from Eqs. 1, 2 and 4 of Hogan and Illingworth (2000) you can compute the overlap parameter:

$$\alpha_{i+1/2} = \frac{C_{\text{rand}} - C}{C_{\text{max}} - C},\tag{2.3}$$

where the combined cloud covers that would be obtained from the random and maximum overlap assumptions are

$$C_{\text{rand}} = c_i + c_{i+1} - c_i c_{i+1}; \qquad (2.4)$$

$$C_{\max} = \max(c_i, c_{i+1}). \tag{2.5}$$

Alternatively, cloud overlap can be parameterized as in most atmospheric models in terms of an overlap decorrelation length as shown in Table 2.4, which implements Eq. 5 of Hogan and Illingworth (2000). In addition to describing how cloud boundaries overlap, *ecRad* needs to know how sub-grid cloud inhomogeneities are vertically correlated. This cannot be specified at each layer, but is rather specified via the namelist variable cloud_inhom_decorr_scaling in Table 2.3, which gives the ratio of the decorrelation lengths for cloud inhomogeneities and cloud boundaries. The default value of 0.5 was obtained from observations of ice clouds by Hogan and Illingworth (2003).

The variables and parameters above are all used by the McICA and Tripleclouds solvers to represent cloud properties relevant for 1D radiative transfer. In order to use the SPARTACUS solver to represent 3D radiative effects, we also need a means to specify the *normalized cloud perimeter length*, *L*, in each model layer. If we imagine a horizontal slice through the sub-grid cloud field, then *L* is the total cloud perimeter length divided by the area of the domain, with units of inverse metres. This variable is not provided to SPARTACUS directly, since it tends to be strongly dependent on the cloud fraction. Rather we specify either the *cloud effective size*, *C*_S, or the *cloud effective separation*, *C*_X, which tend to be less dependent on cloud fraction. Normalized perimeter length is related to the former via Eq. 29 of Hogan et al. (2019):

$$L = 4c(1-c)/C_S,$$
 (2.6)

and to the latter via (Fielding et al., 2020)

$$L = 4 \left[c(1-c) \right]^{1/2} / C_X, \tag{2.7}$$

where c is the cloud fraction. The variables $1/C_s$ and $1/C_x$ may be specified directly in the input file as inv_cloud_effective_size and inv_cloud_effective_separation, respectively. If both are present then the former will take precedence. The reason that reciprocals are provided is that then a value of zero (corresponding to C_s or C_x of infinity) indicates no 3D effects are to be simulated in a particular layer. If you have a high resolution cloud scene and you wish to vish to run SPARTACUS on it then you need to compute the perimeter length from it (e.g. use a contouring function on a field containing 0 for clear sky and 1 for cloud, and then compute the length of the 0.5 contour), and knowing also cloud fraction you can invert (2.6) or (2.7).

In the context of an atmospheric model, we recommend that C_X is parameterized using the namelist parameters at the bottom of Table 2.4 scheme with the values of Fielding et al. (2020):

```
cloud_separation_scale_toa = 14000.0, ! Value of C_X at top-of-atmosphere (m)
cloud_separation_scale_surface = 2500.0, ! Value of C_X at surface (m)
cloud_separation_scale_power = 3.5, ! Describes pressure dependence of C_X
cloud_inhom_separation_factor = 0.75 ! Defines size of cloud inhomogeneities
```

These numbers are used in the namelist in the test/ifs case. Note that the first number shown here, C_X^{TOA} , is valid for a model with a horizontal grid spacing of around 100 km, but this parameter was found by Fielding et al. (2020) to be dependent on horizontal grid spacing Δx in a way that can be fitted with

$$C_X^{\rm TOA} = 1.62 \,\Delta x^{0.47},\tag{2.8}$$

where both C_X^{TOA} and Δx are in km. The surface value of C_X can be assumed to be 2.5 km for all model resolutions.

2.6 Checking the configuration

When ecrad is run, it outputs to the screen a summary of the configuration options, the files read and written and details of the aerosol mapping. This can be used to check that *ecRad* has been configured as intended. The following is an example from the default test in the test/ifs directory, in the case of iverbosesetup=2 and iverbose=1 in the radiation namelist:

```
----- OFFLINE ECRAD RADIATION SCHEME -----
Copyright (C) 2014-2019 European Centre for Medium-Range Weather Forecasts
Contact: Robin Hogan (r.j.hogan@ecmwf.int)
Floating-point precision: double
General settings:
 Data files expected in "../../data"
 Clear-sky calculations are ON
                                                           (do clear=T)
 Saving intermediate radiative properties OFF
                                                           (do_save_radiative_properties=F)
 Saving spectral flux profiles ON
                                                           (do_save_spectral_flux=T)
 Gas model is "RRTMG-IFS"
                                                           (i gas model=1)
 Aerosols are ON
                                                           (use_aerosols=T)
 Clouds are ON
                                                           (do_clouds=T)
Surface settings:
```

Saving surface shortwave spectral fluxes OFF (do_surface_sw_spectral_flux=F) Saving surface shortwave fluxes in abledo bands ON (do_canopy_fluxes_sw=T) Saving surface longwave fluxes in emissivity bands ON (do_canopy_fluxes_lw=T) Longwave derivative calculation is ON (do_lw_derivatives=T) Nearest-neighbour spectral albedo mapping OFF (do_nearest_spectral_sw_albedo=F) Nearest-neighbour spectral emissivity mapping ON (do_nearest_spectral_lw_emiss=T) Cloud settings: Cloud fraction threshold = .100E-05(cloud_fraction_threshold) Cloud mixing-ratio threshold = .100E-08(cloud_mixing_ratio_threshold) Liquid optics scheme is "SOCRATES" (i_liq_model=2) Ice optics scheme is "Fu-IFS" (i_ice_model=2) Longwave ice optics bug in Fu scheme is OFF (do_fu_lw_ice_optics_bug=F) Cloud overlap scheme is "Exp-Exp" (i_overlap_scheme=2) Use "beta" overlap parameter is OFF (use_beta_overlap=F) Cloud PDF shape is "Gamma" (i_cloud_pdf_shape=1) Cloud inhom decorrelation scaling = .500(cloud_inhom_decorr_scaling) Solver settings: Shortwave solver is "McICA" (i_solver_sw=2) Shortwave delta scaling after merge with gases OFF (do_sw_delta_scaling_with_gases=F) Longwave solver is "McICA" (i_solver_lw=2) Longwave cloud scattering is ON (do_lw_cloud_scattering=T) Longwave aerosol scattering is OFF (do_lw_aerosol_scattering=F) Warning: turning on do_surface_sw_spectral_flux as required by do_canopy_fluxes_sw Reading ../../data/RADRRTM Reading ../../data/RADSRTM Weighting of 6 albedo values in 14 shortwave bands (wavenumber ranges in cm-1): 2600 to 3250: 0.00 0.00 0.00 0.00 0.00 1.00 3250 to 4000: 0.00 0.00 0.00 0.00 0.00 1.00 4000 to 4650: 0.00 0.00 0.00 0.00 0.69 0.31 4650 to 5150: 0.00 0.00 0.00 0.00 1.00 0.00 5150 to 6150: 0.00 0.00 0.00 0.00 1.00 0.00 6150 to 7700: 0.00 0.00 0.00 0.00 1.00 0.00 7700 to 8050: 0.00 0.00 0.00 0.00 1.00 0.00 8050 to 12850: 0.00 0.00 0.00 0.93 0.07 0.00 12850 to 16000: 0.00 0.00 0.48 0.52 0.00 0.00 16000 to 22650: 0.00 0.00 1.00 0.00 0.00 0.00 22650 to 29000: 0.00 0.99 0.01 0.00 0.00 0.00 29000 to 38000: 0.00 1.00 0.00 0.00 0.00 0.00 38000 to 50000: 0.83 0.17 0.00 0.00 0.00 0.00 820 to 2600: 0.00 0.00 0.00 0.00 0.00 1.00 Mapping from 16 longwave bands to emissivity intervals: 1 1 1 1 1 2 2 2 1 1 1 1 1 1 1 1 Reading NetCDF file ../../data/socrates_droplet_scattering_rrtm.nc Reading NetCDF file ../../data/fu_ice_scattering_rrtm.nc Reading NetCDF file ../../data/aerosol_ifs_rrtm_46R1_with_NI_AM.nc Aerosol mapping: 1 -> hydrophilic type 1: Sea salt, bin 1, 0.03-0.5 micron, OPAC 2 -> hydrophilic type 2: Sea salt, bin 2, 0.50-5.0 micron, OPAC 3 -> hydrophilic type 3: Sea salt, bin 3, 5.0-20.0 micron, OPAC 4 -> hydrophobic type 1: Desert dust, bin 1, 0.03-0.55 micron, (SW) Dubovik et al. 2002... 5 -> hydrophobic type 2: Desert dust, bin 2, 0.55-0.90 micron, (SW) Dubovik et al. 2002... 6 -> hydrophobic type 3: Desert dust, bin 3, 0.90-20.0 micron, (SW) Dubovik et al. 2002... 7 -> hydrophilic type 4: Hydrophilic organic matter, OPAC 8 -> hydrophobic type 10: Hydrophobic organic matter, OPAC (hydrophilic at RH=20%) 9 -> hydrophobic type 11: Black carbon, OPAC 10 -> hydrophobic type 11: Black carbon, OPAC 11 -> hydrophilic type 5: Ammonium sulfate (for sulfate), GACP Lacis et al https://gacp... 12 -> hydrophobic type 14: Stratospheric sulfate (hydrophilic ammonium sulfate at RH 20%-30%) Reading NetCDF file ../../data/mcica_gamma.nc Reading NetCDF file ecrad_meridian.nc Warning: variable co_vmr not found Warning: variable no2_vmr not found Writing NetCDF file inputs.nc Performing radiative transfer calculations Writing NetCDF file ecrad_meridian_default_out.nc _____

Chapter 3

Incorporating *ecRad* into another program

ecRad can be called within a larger program, and indeed it has been incorporated into several atmospheric models (the IFS, Meso-NH and ICON). Pending a full description here of how to do this, see the ifs/radiation_setup.F90 in the *ecRad* package to see how it is configured in the IFS, and ifs/radiation_scheme.F90 for how it is run.

When calling *ecRad* from within a model, the parameters listed in Table 2.3 are members of the $config_type$ structure, and may be modified within the code at the appropriate place in the configuration stage. The exception is in the case of strings, which are prefixed by _name in the namelist. In the config_type structure there are equivalent integers to express these parameters, which can be changed using the named constants listed in Table 3.1.

Table 3.1: Integers in the config_type structure that represents the strings in Table
2.3, where a namelist parameter named *_name would be named i_* here.

Variable in config_type	Available named constants, default
i_overlap_scheme	IOverlapMaximumRandom, IOverlapExponentialRandom , IOverlapExponential
i_solver_sw, i_solver_lw	ISolverCloudless, ISolverHomogeneous, ISolverMcICA , ISolverSpartacus, ISolverTripleclouds
i_3d_sw_entrapment	IEntrapmentZero, IEntrapmentEdgeOnly, IEntrapmentExplicit , IEntrapmentExplicitNonFractal, IEntrapmentMaximum
i_gas_model	IGasModelMonochromatic, IGasModelIFSRRTMG
i_liq_model	ILiquidModelMonochromatic, ILiquidModelSOCRATES, ILiquidModelSlingo
i_ice_model	IIceModelMonochromatic, IIceModelFu , IIceModelBaran2016, IIceModelYi
i_cloud_pdf_shape	IPdfShapeGamma, IPdfShapeLognormal

Bibliography

- Baran, A. J., P. Hill, D. Walters, S. C. Hardiman, K. Furtado, P. R. Field and J. Manners, 2016: The impact of two coupled cirrus microphysicsradiation parameterizations on the temperature and specific humidity biases in the tropical tropopause layer in a climate model. J. Climate, 29, 5299–5316.
- Fielding, M. D., S. A. K. Schäfer, R. J. Hogan and R. M. Forbes, 2020: Encapsulating cloud geometry for 3D radiative transfer and cloud turbulent mixing parameterizations. *To be submitted to Q. J. R. Meteorol. Soc.*
- Fu, Q., 1996: An accurate parameterization of the solar radiative properties of cirrus clouds. *J. Climate*, **9**, 2058–2082.
- Fu, Q., P. Yang and W. B. Sun, 1998: An accurate parametrization of the infrared radiative properties of cirrus clouds of climate models. J. Climate, 11, 2223-2237.
- Hogan, R. J., and A. J. Illingworth, 2000: Deriving cloud overlap statistics from radar. Q. J. R. Meteorol. Soc., **126**, 2903–2909.
- Hogan, R. J., and A. J. Illingworth, 2003: Parameterizing ice cloud inhomogeneity and the overlap of inhomogeneities using cloud radar data. J. Atmos. Sci., **60**, 756–767.
- Hogan, R. J., and A. Bozzo, 2015: Mitigating errors in surface temperature forecasts using approximate radiation updates. *J. Adv. Model. Earth Syst.*, **7**, 836–853.
- Hogan, R. J., and A. Bozzo, 2016: ECRAD: a new radiation scheme for the IFS. *ECMWF Technical Memorandum* 787, available at http://www.ecmwf.int/en/elibrary/16901-ecrad-new-radiation-scheme-ifs
- Hogan, R. J., and A. Bozzo, 2018: A flexible radiation scheme for the ECMWF model. *J. Adv. Model. Earth Syst.*, **10**, doi:10.1029/2018MS001364.
- Hogan, R. J., S. A. K. Schäfer, C. Klinger, J.-C. Chiu and B. Mayer, 2016: Representing 3D cloud-radiation effects in two-stream schemes: 2. Matrix formulation and broadband evaluation. J. Geophys. Res., 121, 8583–8599.
- Hogan, R. J., M. D. Fielding, H. W. Barker, N. Villefranque and S. A. K. Schäfer, 2019: Entrapment: An important mechanism to explain the shortwave 3D radiative effect of clouds. J. Atmos. Sci., 76, 2123–2141.
- Iacono, M. J., J. S. Delamere, E. J. Mlawer, M. W. Shephard, S. A. Clough and W. D. Collins, 2008: Radiative forcing by longlived greenhouse gases: Calculations with the AER radiative transfer models. *J. Geophys. Res.*, 113, D13103, doi: 10.1029/2008JD009944.
- Pincus, R., H. W. Barker, and J.-J. Morcrette, 2003: A fast, flexible, approximate technique for computing radiative transfer in inhomogeneous clouds. J. Geophys. Res. Atmos., 108, 4376, doi:10.1029/2002JD003322.
- Schäfer, S. A. K., R. J. Hogan, C. Klinger, J.-C. Chiu and B. Mayer, 2016: Representing 3D cloud-radiation effects in two-stream schemes: 1. Longwave considerations and effective cloud edge length. J. Geophys. Res., 121, 8567–8582.
- Shonk, J. K. P., and R. J. Hogan, 2008: Tripleclouds: an efficient method for representing horizontal cloud inhomogeneity in 1D radiation schemes by using three regions at each height. J. Climate, 21, 2352–2370.

- Shonk, J. K. P., R. J. Hogan, J. M. Edwards and G. G. Mace, 2010: Effect of improving representation of horizontal and vertical cloud structure on the Earth's radiation budget: 1. Review and parameterisation. *Q. J. R. Meteorol. Soc.*, **136**, 1191–1204.
- Slingo, A., 1989: A GCM parametrization for the shortwave radiative properties of water clouds. *J. Atmos. Sci.*, **46**, 1419–1427.
- Yi, B., P. Yang, B. A. Baum, T. L'Ecuyer, L. Oreopoulos, E. J. Mlawer, A. J. Heymsfield and K.-K. Liou, 2013: Influence of ice particle surface roughening on the global cloud radiative effect. *J. Atmos. Sci.*, **70**, 2794–2807.