Introduction to chaos

Antje Weisheimer
Antje.Weisheimer@ecmwf.int

- based on some lecture material prepared in previous years by Tim Palmer and Sarah Keeley -
Vilhelm Bjerknes (1862-1951)

“Founding father of modern weather forecasting”

Norwegian physicist who proposed weather forecasting as a deterministic initial value problem based on the laws of physics
Lewis Fry Richardson (1881-1953)

English scientist who produced the first numerical weather forecast

- Forecast for 20 May 1910 1pm by direct computation of the solutions to simplified flow equations using input data taken at 7am

- Forecast predicted rise in surface pressure by 145 hPa in 6 hours → dramatic failure

- A posteriori: failure to apply smoothing to data to filter out unphysical waves
“Why have meteorologists such difficulty in predicting the weather with any certainty? Why is it that showers and even storms seem to come by chance ... a tenth of a degree (C) more or less at any given point, and the cyclone will burst here and not there, and extend its ravages over districts that it would otherwise have spared. If (the meteorologists) had been aware of this tenth of a degree, they could have known (about the cyclone) beforehand, but the observations were neither sufficiently comprehensive nor sufficiently precise, and that is the reason why it all seems due to the intervention of chance”

Poincaré, 1909
Edward Lorenz (1917 –2008)

“… one flap of a sea-gull’s wing may forever change the future course of the weather” (Lorenz, 1963)

\[\dot{X} = -\sigma X + \sigma Y \]
\[\dot{Y} = -XZ + rX - Y \]
\[\dot{Z} = XY - bZ \]
The Lorenz (1963) attractor – a protoptype chaotic model
What is deterministic chaos?

A physical system that

- follows deterministic rules (absence of randomness)
- but appears to behave randomly; it looks random
- needs to be nonlinear, dissipative and at least 3-dimensional

\[
\frac{dX}{dt} = F[X] \quad \text{is a nonlinear system}
\]

\[
\Rightarrow \quad \frac{d\delta X}{dt} = \frac{dF}{dX} \quad \delta X \equiv J \delta X
\]

Since \(F \) is a nonlinear function of \(X \)

\[
\Rightarrow \quad J = J(X)
\]
A fifteen-month section of the original print-out of symbols representing two variables of the twelve-variable model. A solid curve had been drawn through the symbols for one variable, while the symbols for the other are faintly visible. The section has been broken into three five-month segments, shown on consecutive rows.

(Ed Lorenz: The Essence of Chaos)
Ed Lorenz (1963): Deterministic Nonperiodic Flow

Dynamical system that is highly sensitive to perturbations of the initial conditions
(deterministic chaos)

\[
\begin{pmatrix}
\dot{x} \\
\dot{y} \\
\dot{z}
\end{pmatrix} =
\begin{pmatrix}
-\sigma (x - y) \\
(r - z)x - y \\
x y - bz
\end{pmatrix}
\]
In a nonlinear system the growth of initial uncertainty is flow dependent.

The set of initial conditions (black circle) is located in different regions of the attractor in a), b) and c) and leads to different error growth and predictability in each case.
The climate is a chaotic system where the future state of the system can be very sensitive to small differences in the current (initial) state of the system.

In practice, the initial state of the system is always uncertain.

Our forecast models are not perfect in all aspects (e.g. small-scale features such as clouds).

Ensemble forecasting takes into account these inherent uncertainties by running a large number of similar but not identical versions of the model in parallel. The resulting forecasts are expressed in probabilities.
Lothar: 08Z, 26 Dec. 1999

- 100 fatalities
- 400 million trees blown down
- 3.5 million electricity users affected for 20 days
- 3 million people without water
forecast 24 December 1999, 12UTC +0 h - mem no. 13 of 17

forecast 24 December 1999, 12UTC +0 h - mem no. 14 of 17
Ensemble Initial Conditions 24 December 1999
<table>
<thead>
<tr>
<th>Deterministic prediction</th>
<th>Verification</th>
</tr>
</thead>
</table>

Ensemble forecast of the French / German storms (surface pressure)

Start date 24 December 1999 : Forecast time T+42 hours

<table>
<thead>
<tr>
<th>Forecast 1</th>
<th>Forecast 2</th>
<th>Forecast 3</th>
<th>Forecast 4</th>
<th>Forecast 5</th>
<th>Forecast 6</th>
<th>Forecast 7</th>
<th>Forecast 8</th>
<th>Forecast 9</th>
<th>Forecast 10</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forecast 11</td>
<td>Forecast 12</td>
<td>Forecast 13</td>
<td>Forecast 14</td>
<td>Forecast 15</td>
<td>Forecast 16</td>
<td>Forecast 17</td>
<td>Forecast 18</td>
<td>Forecast 19</td>
<td>Forecast 20</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forecast 21</td>
<td>Forecast 22</td>
<td>Forecast 23</td>
<td>Forecast 24</td>
<td>Forecast 25</td>
<td>Forecast 26</td>
<td>Forecast 27</td>
<td>Forecast 28</td>
<td>Forecast 29</td>
<td>Forecast 30</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forecast 31</td>
<td>Forecast 32</td>
<td>Forecast 33</td>
<td>Forecast 34</td>
<td>Forecast 35</td>
<td>Forecast 36</td>
<td>Forecast 37</td>
<td>Forecast 38</td>
<td>Forecast 39</td>
<td>Forecast 40</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Forecast 41</td>
<td>Forecast 42</td>
<td>Forecast 43</td>
<td>Forecast 44</td>
<td>Forecast 45</td>
<td>Forecast 46</td>
<td>Forecast 47</td>
<td>Forecast 48</td>
<td>Forecast 49</td>
<td>Forecast 50</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Charlie is planning to lay concrete tomorrow. Should he?

Let p denote the probability of frost. Charlie loses L if concrete freezes. But Charlie also has fixed (e.g. staff) costs. There may be a penalty for late completion of this job - by delaying completion of this job, he will miss out on other jobs. These costs are C.

Is $L^*p > C$?

If $p > C/L$ don’t lay concrete!