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Using stochastic physics to represent model uncertainty

• Why represent model uncertainty in an ensemble forecast?

• What are the sources of model uncertainty?

• How do we currently represent model uncertainty in the IFS?

• Towards process-level simulation of model uncertainty
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• In a reliable ensemble, ensemble spread is a predictor of ensemble error

i.e. averaged over many ensemble forecasts,
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For a thorough discussion of this relationship:

Martin Leutbecher’s lectures



• In an over-dispersive ensemble, 
𝑒  𝑥 ≪ 𝜎 𝑥

and ensemble spread does not provide a good estimate of error.

The relatively large spread implies large uncertainty and hence, likely large error:

an “under-confident forecast”
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Ensemble reliability
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What happens when the ensemble includes no representation of model uncertainty?

• In an under-dispersive ensemble, 
𝑒  𝑥 ≫ 𝜎 𝑥

The small spread implies low uncertainty and hence, small errors:

an “over-confident forecast”



Ensemble forecasts with only initial conditions perturbations

CY43R1

TCo399, dt=900s, 

23 dates (2015),

20 perturbed fcs

Ensemble mean RMSE (“Error”) & standard deviation (“Spread”)

RMSE unperturbed fc

RMSE ensemble mean

RMS ensemble variance
Why this lack of spread?



Sources of uncertainty: initial conditions

forecast 
model
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Set of perturbed 
forecasts

What about “model uncertainty”?

Each ensemble member sees the 
same forecast model



Dynamics

Coupled 

processes

X

DX

Physics 

parametriza-

tions
PX

CX

Sources of uncertainty: inside the forecast model?

• Discretisation

• Time-integration

• Transport

• Stabilisation

• LW/SW Radiation

• Convection

• Clouds & microphysics

• Composition

• Boundary layer 

• Turbulent mixing

• Gravity wave drag

• Land-surface

• Ocean

• Sea-ice



Model uncertainty: parametrized atmospheric physics processes

Uncertainties arise due to:

• Inability to resolve sub-grid scales, 
e.g.

– Surface drag (orography/waves)

– Convection rates (occurrence / 
en/detrainment)

– Phase transitions

– Radiation transfer in cloudy skies

• Poorly constrained parameters, e.g.

– Vertical cloud-overlap (radiation)

– Composition

– Non-orographic drag



Model uncertainty: parametrized atmospheric physics processes

“Don’t throw the baby out with the 
bath water!”

Parametrisation schemes:

• developed/operate together

• highly tuned for best 
performance

Seek a description of uncertainty 
that retains consistencies of the 
representation of the physical 
processes.



Model uncertainty: parametrized atmospheric physics processes

e.g. profile of heating rates from 
physics parametrisations:



Model uncertainty: parametrized atmospheric physics processes
Proposal: represent uncertainties with 
a perturbation proportional to the 
profile of net physics tendencies

Stochastically Perturbed 
Parametrisation Tendencies 
(SPPT)

𝑿′ = 1 + 𝑟 𝑿



Sources of uncertainty: accounting for model uncertainty
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Set of perturbed 
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forecasts
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Each ensemble member sees a 
different forecast model



Recall: Ensemble forecasts: with initial conditions perturbations (IP) only

CY43R1

TCo399, dt=900s, 

23 dates (2015),

20 perturbed fcs

Ensemble mean RMSE (“Error”) & standard deviation (“Spread”)

RMSE ensemble mean

RMS ensemble variance IP only

Why this lack of spread?



Ensemble forecasts: with grid-scale model uncertainty perturbations (SPPT)

CY43R1

TCo399, dt=900s, 

23 dates (2015),

20 perturbed fcs

Ensemble mean RMSE (“Error”) & standard deviation (“Spread”)

IP + SPPT* 

(*white noise 

wrt time/horizontal)

IP only

Uncorrelated noise 

yields little benefit



Ensemble forecasts: with static model uncertainty perturbations (SPPT)

CY43R1

TCo399, dt=900s, 

23 dates (2015),

20 perturbed fcs

Ensemble mean RMSE (“Error”) & standard deviation (“Spread”)

IP + SPPT* 

(*static perturbations 

wrt time/horizontal)

IP only

Static perturbations 

yield increased errors



Stochastically Perturbed Parametrisation Tendencies (SPPT) scheme

• Initially implemented in IFS, 1998 (Buizza et al., 1999); revised in 2009:

• Simulates model uncertainty due to physics parameterisations by

• taking the net tendencies from the physics parametrisations:

𝑿 = 𝑋𝑈 , 𝑋𝑉 , 𝑋𝑇 , 𝑋𝑄

• and perturbing with multiplicative noise 𝑟 ∈ −1, +1 as:

𝑿′ = 1 + 𝜇𝑟 𝑿

where 𝜇 ∈ 0,1 tapers the perturbations to zero near the surface & in the stratosphere.
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coming from radiation schemes

gravity wave drag

vertical mixing

convection

cloud physics

Shutts et al. (2011, ECMWF Newsletter);  Palmer et al., (2009, ECMWF Tech. Memo.)

𝑟 ∈ −1, +1

𝜇 ∈ 0,1



SPPT random pattern

• 2D random pattern in spectral space:

– First-order auto-regressive [AR(1)] process for evolving spectral coefficients  𝑟

 𝑟 𝑡 + ∆𝑡 = 𝜙  𝑟 𝑡 + 𝜌𝜂 𝑡

where 𝜙 = exp  −∆𝑡 𝜏 controls the correlation over timestep ∆𝑡;

and spatial correlations (Gaussian around the globe) for each wavenumber 

define 𝜌 for random numbers, 𝜂

• Resulting pattern mapped into grid-point space 𝑟:

– clipped such that 𝑟 ∈ −1, +1

– same pattern is applied to 𝑇, 𝑞, 𝑢, 𝑣

– applied at all model levels to preserve vertical structures**

– **Except: tapered to zero at model top/bottom, to avoid:

• instabilities due to perturbations in the boundary layer; 

• perturbing stratospheric tendencies dominated by well-constrained clear-skies radiation
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𝑟𝑗 ∈ −1, +1

𝜇 ∈ 0,1



• 2D random pattern, 𝑟:

– Time-correlations: AR(1) 

– Spatial-correlations: Gaussian shape around the globe

– Clipped such that 𝑟 ∈ −1, +1

• Applied at all model levels to preserve vertical structures**

**Except: tapered to zero at model top/bottom
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3 correlation scales:

i) 6 hours, 500 km, 𝜎 = 0.52

ii) 3 days, 1 000 km, 𝜎 = 0.18

iii) 30 days, 2 000 km, 𝜎 = 0.06

SPPT random pattern



SPPT pattern
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i) 6 hours, 500 km, 𝜎 = 0.52

ii) 3 days, 1 000 km, 𝜎 = 0.18

iii) 30 days, 2 000 km, 𝜎 = 0.06

3 correlation scales:

SPPT random pattern

(Note different colour scales)
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SPPT pattern

5

Multi-scale SPPT

500 km

6 h

1000 km

3 d

2000 km

30 d

Leutbecher . . . NWP ensembles Reading, 20–24 June ’11 12 / 29

SPPT random pattern



Ensemble forecasts: with multi-scale model uncertainty perturbations (SPPT)

CY43R1

TCo399, dt=900s, 

23 dates (2015),

20 perturbed fcs

Ensemble mean RMSE (“Error”) & standard deviation (“Spread”)

IP + SPPT1* 

(*short scales only)

IP only

Some additional 

spread from SPPT3 –

notably in the tropics

IP + SPPT3** 

(**3 scales)



Ensemble forecasts: with multi-scale model uncertainty perturbations (SPPT)

CY43R1

TCo399, dt=900s, 

23 dates (2015),

20 perturbed fcs

Probabilistic skill (CRPS)

IP + SPPT1* 

(*short scales only)

IP only

Some additional 

spread from SPPT3 –

notably in the tropics

IP + SPPT3** 

(**3 scales)

Error & Spread

-ve = 

better

+ve = 

worse

Improved 

probabilistic scores 

from SPPT3 

(notably in tropics)

IP + SPPT1

IP + SPPT3



Stochastic representations of model uncertainty in IFS

IFS ensemble forecasts (ENS and SEAS) include 2 model uncertainty schemes:

1. Stochastically perturbed parametrisation tendencies (SPPT) scheme

• SPPT scheme: simulates model uncertainty due to sub-grid parametrisations

2. Stochastic kinetic energy backscatter (SKEB) scheme

• SKEB scheme: aims to parametrise a missing process 

– upscale transfer of KE from sub-grid scales to resolved scales

– real atmosphere exhibits upscale propagation of kinetic energy (KE)

– occurs at ALL scales: no concept of “resolved” and “unresolved” scales
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Stochastic Kinetic Energy Backscatter (SKEB) scheme

Introduced into IFS, 2010:

• Attempts to simulate a process otherwise absent from the model –

upscale transfer of energy from sub-grid scales 

• Represents backscatter of Kinetic Energy (KE) by adding perturbations to 𝑈 and 𝑉
via a forcing term to the streamfunction:

𝐹𝜑 = 𝑏𝑅𝐷  1
2𝐹∗

where 

𝐷 is an estimate of the smoothed total local dissipation rate due to the model,

𝑏R is the ”backscatter ratio” – a scaling factor,

𝐹∗ is a 3D evolving random pattern field.
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Shutts et al. (2011, ECMWF Newsletter); Palmer et al., (2009, ECMWF Tech. Memo.); 
Shutts (2005, QJRMS); Berner et al. (2009, JAS)



𝐹𝜑 = 𝑏𝑅𝐷  1
2𝐹∗

• 3D random pattern field 𝐹∗:

– First-order auto-regressive [AR(1)] process for evolving 𝐹∗

𝐹∗ 𝑡 + ∆𝑡 = 𝜙𝐹∗ 𝑡 + 𝜌𝜂 𝑡

where 𝜙 = exp  −∆𝑡 𝜏 controls the correlation over timestep ∆𝑡;

and spatial correlations (power law) for wavenumbers define 𝜌 for random numbers, 𝜂

₋ vertical space-(de)correlations: random phase shift of 𝜂 between levels
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SKEB perturbations



SKEB perturbations

𝐷 is an estimate of sub-grid scale production of KE:

1. 𝐷con = estimated KE generated by updraughts and detrainment within 
sub-grid deep convection

(and in earlier IFS configurations)

2. 𝐷num = numerical dissipation from

• explicit horizontal diffusion (bi-harmonic, 2); and 

• estimate due to semi-Lagrangian interpolation error

3. 𝐷OGWD = dissipation due to orographic GWD
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𝐹𝜑 = 𝑏𝑅𝐷  1
2𝐹∗

Dynamics

Coupled 

processes

X

Physics 

parametriza-

tions PX

CX

DX



Ensemble standard deviation (“Spread”)

Ensemble forecasts: SPPT & SKEB



Probabilistic skill (CRPS)

Ensemble forecasts: SPPT & SKEB

Future IFS development: likely that we remove SKEB (cost versus skill improvement)



How are the perturbation patterns determined?

• Characteristics of errors due to model uncertainty are difficult determine:

• uncertain processes are typically small-scale (space and time)

• requires verification against high-resolution (space/time) observations (e.g. satellite)

• Can attempt to use models: coarse-graining studies (e.g. Shutts and Palmer, 2007)

• take high-resolution model simulation as “truth” 

• average the high-res model fields/tendencies/streamfunction to a grid-resolution typical of the 
forecast model

• characterise differences (“errors”) between the coarse-grained “truth” and the parametrised
forecast model

• coarse-graining studies were used to justify and inform scales in SPPT and SKEB
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Stochastic representation of model uncertainty in IFS

• Errors due to model uncertainty arise from unresolved and misrepresented processes

• finite-resolution of a discrete numerical model

• parametrisations use simplified, bulk methods to represent complex, multi-scale sub-grid processes

• Difficult to characterise sources of model uncertainty due to their small scales

• Without representing model uncertainty, ensemble forecasts are under-dispersive => over-confident

• Stochastic representations of model uncertainty improve ensemble reliability

• IFS ensemble forecasts include 2 stochastic schemes:

• SPPT: represents uncertainty due to sub-grid atmospheric physics parameterisations

• SKEB: simulates upscale transfer of kinetic energy from unresolved scales

• Medium-range: increased ensemble spread, greater probabilistic skill

• Seasonal: reduction in biases; better representation of MJO, ENSO, PNA regimes (Weisheimer et al., 

2014, Phil. Trans. R. Soc. A)
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Stochastic representations of model uncertainty: brief outlook for IFS

• Aim: to improve the physical consistency

• Generate flux perturbations at the top of 
atmosphere (TOA) and surface that are consistent 
with tendency perturbations within the atmospheric 
column

• Conservation of water

• Remove ad hoc tapering in boundary layer and 
stratosphere

• Include multi-variate aspects of uncertainties
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Towards process-level model uncertainty representation



Stochastic physics: brief outlook for IFS

Stochastically Perturbed Parametrisations (SPP)

(Ollinaho et al., 2017, QJRMS)

• Embed stochasticity inside IFS parametrisations

• Perturb parameters/variables directly

• Specify spatial/temporal correlations

• Target uncertainties that matter (level of 
uncertainty and impact)

• Require that stochastic schemes converge to 
deterministic schemes in limit of vanishing variance
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Towards process-level model uncertainty representation



Stochastically Perturbed Parametrisations (SPP) scheme

Stochastic perturbations are applied to unperturbed 
parameters / variables in the physics parametrisations,  𝜉𝑗:

𝜉𝑗 =  𝜉𝑗 exp 𝛹𝑗

where 
𝛹𝑗~𝒩 𝜇𝑗, 𝜎𝑗

2

Development started with parameter perturbations to 
target cloudy-skies radiation

Now includes 20 parameters/variables from:

• Turbulent diffusion and subgrid orography

• Cloud and large-scale precipitation

• Radiation

• Convection
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Towards process-level model uncertainty representation

(Ollinaho et al., 2017, QJRMS)



35

Stochastically Perturbed Parametrisations (SPP) scheme

IP only

CY43R1

TCo399, dt=900s, 

23 dates (2015),

20 perturbed fcs

IP + SPPT

IP + SPP

Ensemble mean RMSE (“Error”) & standard deviation (“Spread”)

More work to do to 

improve SPP – missing 

some uncertainty 

representation (cf. SPPT)?
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Future: representing other sources of uncertainty?

• Discretisation

• Time-integration

• Transport

• Stabilisation

• LW/SW Radiation

• Convection

• Clouds & microphysics

• Composition

• Boundary layer 

• Turbulent mixing

• Gravity wave drag

• Land-surface

• Ocean

• Sea-ice
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Further reading
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In 2016, we undertook an extensive review of existing and future efforts in model uncertainty 
representation – a Special Topic paper for our Scientific Advisory Committee:

• Leutbecher et al., 2016: Stochastic representations of model uncertainties at ECMWF: State of 
the art and future vision, ECMWF Tech Memo, 785

Report covers:

– Literature review

– Descriptions/discussions of SPPT / SKEB / SPP

– Impacts of the schemes in the IFS (EDA; short / medium / extended / longer ranges)

– Proposals for future directions – improvements to SPPT; extensions to SPP; new approaches

Revised (improved!) version:

• Leutbecher et al., 2017: Stochastic representations of model uncertainties at ECMWF: State of 
the art and future vision, QJRMS (in review)


