Initialization Techniques in Seasonal Forecasting

Magdalena A. Balmaseda
Outline

The importance of the ocean initial conditions in SF

Ocean Model initialization

The value of observational information: fluxes, SST, ocean observations

The difficulties

The traditional Full Initialization approach: pros and cons.

Other approaches. Assessment

Full Initialization, Anomaly Initialization
Coupled Initialization
The basis for extended range forecasts

• Forcing by boundary conditions changes the atmospheric circulation, modifying the large scale patterns of temperature and rainfall, so that the probability of occurrence of certain events deviates significantly from climatology.
 ➢ Important to bear in mind the probabilistic nature of SF

• The boundary conditions have longer memory, thus contributing to the predictability. Important boundary forcing:
 ➢ Tropical SST: ENSO, Indian Ocean Dipole, Atlantic SST
 ➢ Land: snow depth, soil moisture
 ➢ Sea-Ice
 ➢ Mid-Latitude SST
 ➢ Atmospheric composition: green house gases, aerosols,...
 ➢ Stratosphere
Importance of Initialization

• **Atmospheric point of view: Boundary condition problem**
 - Forcing by lower boundary conditions changes the PDF of the atmospheric attractor
 - “Loaded dice”

• **Oceanic point of view: Initial value problem**
 - Prediction of *tropical* SST: need to initialize the ocean subsurface.
 - Emphasis on the thermal structure of the upper ocean
 - Predictability is due to higher heat capacity and predictable dynamics
End-To-End Seasonal forecasting System

INITIALIZATION

OBSERVATIONS
DATA ASSIMILATION

CURRENT STATE OF ATMOSPHERE
CURRENT STATE OF OCEAN

COUPLED MODEL

Atmosphere model
Ocean model

ENSEMBLE GENERATION

Atmosphere model
Ocean model

PROBABILISTIC CALIBRATED FORECAST

Tailored Forecast

FORECAST START

Ensemble size = 40, climate size = 70
Forecast start reference is 01/06/2005
Tropical Storm Frequency
ECMWF Seasonal Forecast
Significance level is 90%
JASON

MONTHLY MEAN ANOMALIES RELATIVE TO NCEP ADJUSTED OIV2 1971-2000 CLIMATOLOGY

ECMWF forecast from 1 Jan 2007
NINO3.4 SST ANOMALY PLUME
Produced from real-time forecast data

System 3

Anomaly (deg C)
Dealing with model error: Hindcasts

Ocean reanalysis

time

Coupled Hindcasts, needed to estimate climatological PDF, require a historical ocean reanalysis

Real time Probabilistic Coupled Forecast

Consistency between historical and real-time initial conditions is required.

Hindcasts are also needed for skill estimation
Initialization Problem: Production of Optimal I.C.

• **Optimal Initial Conditions:** those that produce the best forecast.

 Need of a metric: lead time, variable, region (i.e. subjective choice)

 Usually forecast of SST indices, lead time 1-6 months

• Theoretically, initial conditions should represent accurately the state of the real world and project into the model attractor, so the model is able to evolve them.

 Difficult in the presence of model error

• Practical requirements: Consistency between re-forecasts and real time fc

 Need for historical ocean reanalysis

• Current Priorities:

 o Initialization of SST and ocean subsurface.
 o Land/ice/snow
A decade of progress on ENSO prediction

- Steady progress: ~1 month/decade skill gain
- How much is due to the initialization, how much to model development?

Half of the gain on forecast skill is due to improved ocean initialization
How do we initialize the ocean?

To a large extent, the large scale ocean variability is forced by the atmospheric surface fluxes.

Different ocean models forced by the same surface fluxes will produce similar tropical variability. Daily fluxes of heat (short and long wave, latent, sensible heat), momentum and fresh water fluxes. Wind stress is essential for the interannual variability.

OCEAN MODEL +

1. Fluxes from atmospheric models: Constrained by SST

 have large systematic errors and a large unconstrained chaotic component

2. Fluxes from atmospheric reanalysis: Constrained by SST + Atmos Obs.

 Reduced chaotic component and systematic error. But still large errors/uncertainty

3. Fluxes from atmos reanalysis + Ocean Obs (SST + Atmos Obs + Ocean Obs): Ocean re-analysis. Difficulties: Changing observing system and model error
Information to initialize the ocean

- Ocean model Plus:
 - SST
 - Atmospheric fluxes from atmospheric reanalysis
 - Subsurface ocean information

Time evolution of the Ocean Observing System

- 1982
- XBT’s 60’s
- 1993
- Satellite SST
- 2001
- Moorings/Altimeter ARGO
Uncertainty in Surface Fluxes: Need for Data Assimilation

- Large uncertainty in wind products lead to large uncertainty in the ocean subsurface.

- The possibility is to use additional information from ocean data (temperature, others...)

Questions:

1. Does assimilation of ocean data constrain the ocean state? **YES**
2. Does the assimilation of ocean data improve the ocean estimate? **YES**
3. Does the assimilation of ocean data improve the seasonal forecasts? **YES**
The Assimilation corrects the ocean mean state

Mean Assimilation Temperature Increment

Data assimilation corrects the slope and mean depth of the equatorial thermocline

Frequency Training Course – Initialization Strategies in Seasonal Forecasting
Changing observing system is a challenge for consistent reanalysis.

Today's Observations will be used in years to come.

▲ Moorings: Subsurface Temperature
◊ ARGO floats: Subsurface Temperature and Salinity
+ XBT: Subsurface Temperature
Impact of data assimilation on the mean

Assim of mooring data

CTL=No data

Large impact of data in the mean state leading to spurious variability

This is largely solved by the introduction of bias correction
Need to correct model bias during assimilation

\[x^a = x^f + b^f + K[y - H(x^f + b^f)] \]
\[b^a = b^f + L[y - H(x^f + b^f)] \]

There is a model for the time evolution of the bias
\[b^f_k = \bar{b}_k + b'_k \]

This is an important difference with respect to the atmos data assimilation, where FG is assumed unbiased.

Without explicit bias correction changes in the observing system can induce

- Spurious signals in the ocean reanalysis
- Non-stationarity of the forecast bias, leading to forecast errors.

Ideally, the bias information should be propagated during the forecast (for this the FG model and FC model should be the same, e.i. coupled model)
Effect of bias correction on the time-evolution

Assim of mooring data
CTL=No data
Bias corrected Assim
Time correlation with altimeter SL product

CNTL: NoObs

NEMOVAR T+S

ORAS4 T+S+Alti

rms TRPAC Potential Temperature

CNTL
NEMOVAR T+S
ORAS4 (TS+Alti)
Impact on Seasonal Forecast Skill

Consistent Improvement everywhere. Even in the Atlantic, traditionally challenging area

Central equatorial Pacific

Central equatorial Atlantic

Equatorial Indian

Northern sub tropical Pacific

Northern sub tropical Atlantic

Southern sub tropical Atlantic
Quantifying the value of observational information

- The outcome may depend on the coupled system
- In a good system information may be redundant, but not detrimental.
 If adding more information degrades the results, there is something wrong with the methodology (coupled/assim system)

- Experiments conducted with the ECMWF S3

 SST+ Atmos observations (fluxes from atmos reanalysis)
 SST+ Atmos observations+ Ocean Observations (ocean reanalysis)

Balmaseda and Anderson 2009, GRL
Impact of “real world” information on skill:

The additional information about the real world improved the forecast skill, except in the Equatorial Atlantic.

Optimal use of the observations needs more sophisticated assimilation techniques and better models, to reduced initialization shock.
Different initializations produce different drift in the same coupled model.

Warm drift in **ALL** caused by Kelvin Wave, triggered by the slackening of coupled model equatorial winds.

SST only has very little equatorial heat content, and the SST cools down very quickly.

SST+ATMOS seems balanced in this region. Not in others.

Sign of non linearity:
The drift in the mean affects the variability.
Seasonal Forecasts Approach
Some caveats

- **Non-stationary model error.**
 - Seasonal cycle dependence, which is known and catered for.
 - Other unknown dependences not considered: trends, changes in observing system
 - Drift depends of lead time. A large number of hindcasts is needed. This is even more costly in decadal forecasts.

- **Initialization shock** can be larger than model bias

Non-linearities and non-stationarity can sometimes render the a posteriori calibration invalid
Full Initialization

Anomaly Initialization

As Medium range but:
Model bias taken into account during DA.

A posteriori calibration of forecast is needed. Calibration depends on lead time.

The model during the initialization is different from the forecast model. Bias correction estimated during initialization can not be applied during the forecasts.

\[
x^a = x^f + b^f + K[y - H(x^f + b^f)]
\]

\[
b^a = b^f + L[y - H(x^f + b^f)]
\]

The model climatology does not depend of forecast lead time. Cheaper in principle than hindcasts.

But hindcasts are still needed for skill estimation.

Acknowledgment of existence of model error during initialization.

Model error is not corrected (“bias blind algorithm”):

\[
x^a = x^f + K[(y - \bar{y}) - H(x^f - \bar{x})]
\]
Anomaly Initialization (Cont)

Two flavours

1. **One-Tier anomaly initialization (Smith et al 2007).** Ocean observations are assimilated directly. Background error covariance formulation derived from coupled model (EOFs, EnOI, EnKF). Emphasis on large spatial scales

2. **Two-Tier anomaly initialization (Pohlmann et al 2009).** Nudging of anomalies from existing ocean re-analysis. The spatial structures are those provided by the source re-analysis.

Limitations

- It assumes quasi-linear regime.
- **Sampling:** how to obtain an observed climatology equivalent to the model climate?
Initialization Shock and Skill

- Initialization Shock
- Skill Forecast lead time
- Phase space
- Real World
- Full Ini Perfect
- Non-linear interactions important

Model Climate

a
b
c
L

Forecast lead time
Initialization Shock and non linearities

Model Clim

Real World

non-linear interactions important

phase space

Forecast lead time

Empirical Flux Corrections
Comparison of Strategies for dealing with systematic errors in a coupled ocean-atmosphere forecasting system as part of the EU FP7 COMBINE project

Magnusson et al. 2012a, Clim Dyn. Also ECMWF Techmemo 658
Magnusson et al. 2012b, Clim Dyn. Also ECMWF Techmemo 676
Coupled model error

SST bias: model - analysis

Part of the error comes from the atmospheric component (too strong easterlies at the equator)

The error amplifies in the coupled model (positive Bjerkness feedback).

Possibility of flux correction

10m winds: model - analysis

Different mean states

Analysis

- Mean SST
- Vertical cross-section of temperature along the equator

Coupled Free

- SST Max
- Cross-section of the equatorial temperature bias

Coupled Ucor

- SST Max
- Cross-section of the equatorial temperature bias

Coupled UHcor

- SST Max
- Cross-section of the equatorial temperature bias

Ucor: surface wind is corrected when passed to the ocean

UHCor: surface wind and heat flux are corrected when passed to the ocean
Comparison of Forecast Strategies:

MEAN DRIFT

Nino 3 SST Drift 1-14 month forecast

Interannual Variability

FC sdv / AN sdv

Analysis Full Ini Anomaly Ini U Correction U+H correction
Nino3.4 SST forecasts November 1995 – November 1998

Full Initialization

Anomaly Initialisation

U-flux correction

U- and H-flux correction

Linus Magnusson et al.

Predictability Training Course – Initialization Strategies in Seasonal Forecasting
Impact on Forecast Skill (ACC)

The impact of initialization/forecast strategy depends on the region.

When the mean state matters (convective precip), the anomaly Initialization underperforms.
What about Full Coupled Initialization?

• Advantages:
 - Hopefully more balanced ocean-atmosphere i.c and perturbations. Important for tropical convection
 - Framework to treat model error during initialization and fc
 If the FG and FC models are the same, the (3D) bias correction estimated during the initialization can (should) be applied during the forecast.
 - Consistency across time scales (seamlessness):
 currently, weather forecasts up to 10 days use “extreme flux correction”, since SST is prescribed. For longer lead times a free coupled model is used. More gradual transition?

• Current Approaches

 Weakly Coupled Data assimilation: FG with coupled model, separate DA of ocean and atmos. Example is NCEP with CFSR, and ECMWF-ESA CERA project, CERA-20C and CERA-SAT (ERACLIM2 project)

 Strongly Coupled Data assimilation: Coupled FG, Coupled Covariances. Usually EnKF

• Challenges:
 - Different time scales of ocean atmosphere . Long window weak constrain?
 - Cross-covariances. Ensemble methodology more natural?
Coupled Initialization and Forecast Shock

M1
Uncoupled Ini
AN mod .ne. FC mod

Laloyaux et al QJ
Mulholland et al MWR
Forecast Shock depends on Initialization

Coupled Ini with CERA has the slowest Forecast Error Growth

From Mulholland et al, MWR
Summary

- Seasonal Forecasting (SF) of SST is an initial condition problem.
- Assimilation of ocean observations reduces the large uncertainty (error) due to the forcing fluxes. Initialization of Seasonal Forecasts needs SST, subsurface temperature, salinity and altimeter derived sea level anomalies.
- Data assimilation improves forecast skill.
- Data assimilation changes the ocean mean state. Therefore, consistent ocean reanalysis requires an explicit treatment of the bias.
- The separate initialization of the ocean and atmosphere systems can lead to initialization shock during the forecasts. A more balance “coupled” initialization is desirable, but it remains challenging.
- Initialization and forecast strategy go together. The best strategy may depend on the model. The anomaly initialization used in decadal forecasts is suboptimal in seasonal.