

Eurasian snow in (long-term) climate reanalyses

Martin Wegmann

University of Grenoble Institute for Environmental Geosciences Stefan Brönnimann Olga Zolina

Question

Why bother looking at "inferior" reanalyses products?

Motivation

- 1. To know how much complexity we need to get to a reasonable result
- 2. To assess how valuable their information is for decadal and centennial studies
- 3. To investigate peculiar climate features which are beyond the range of other products

Question

Why bother looking at snow over northern Eurasia?

Motivation

- 1. Generally, snow is an important component of the climate system
- 2. Northern Eurasia is a key player in the "warm Arctic – cold continent" theory
- 3. Important dynamic links were found between sea ice reduction and Siberian snow fall /depth increase
- Eurasian snow depth is important for the evolution of late winter / spring NH pressure patterns

Validation of complex variables such as snow depth is challenging, especially beyond 1950

Typical challenges:

- length of timeseries
- missing values
- homogeneity
- spatial distribution of observations
- independency
- station relocation / metadata

Menu

- 1. Comparison of 4 long term and 2 short term reanalyses with in-situ snow depth over Russia -> ca. 1900 2010, daily
- 2. Comparison of 1 long term and 4 short term reanalyses with in-situ snow depth and in-situ albedo over Russia -> 2000 2013, daily
- 3. Quick summary of major findings

CHAPTER 01

Long-term: Snow depth

Wegmann, Orsolini, Dutra, Bulygina, Sterin, Brönnimann 2017: Eurasian snow depth in long-term climate reanalysis. *Cryosphere*

Reanalysis	Assimilated data	Assimilation type	Time covered
ERA-Interim	surface, upper air, satellite	4D-var	1979- present
ERA-Interim land	Nudged to ERAI atmosphere		1979- present
ERA20C	Surface pressure and marine winds	4D-var	1900-2010
ERA20C land	Nudged to ERAI20C atmosphere		1900-2010
20CRv2	Surface pressure	Ens. Kalman filter	1871-2012
20CRv2c	Surface pressure	Ens. Kalman filter	1851-2014

 Over 800 Russian meteorological stations with in-situ snow depth measurements (most complete ca. 1960 – 1990). 13 which cover (more or less) the 20th century. Daily resolution. Stake measurements

We decided to focus on autumn (ON, first snow fall) and spring (A, melt season) since both processes are probably most challenging for the reanalyses

Climatology 1981 - 2010

Anomalies 1996 – 2010 wrt 1981 - 1995

RED=stations, BLACK=ERA20C

RED=stations, BLACK=ERAINT_land_d

RED=stations, BLACK=20CRc

RED=stations, BLACK=ERA20C

RED=stations, BLACK=ERA20C_land

RED=stations, BLACK=ERAINT_land_d

RED=stations, BLACK=ERAINT_land_e

Nearest grid analysis, daily res.

S.

16/31

Nearest grid analysis, daily res.

Ś

Ş

Field averaged snow depth over (50°-150° E, 60-75° N) Each point is a 30 year climatology wrt 1981-2010

Field averaged snow depth over all station locations Each point is a 30 year climatology wrt 1981-2010

Field averaged SLP over (50°-150° E, 60-75° N) Each point is a 30 year climatology wrt 1981-2010

Field averaged t2m over (50°-150° E, 60-75° N) Each point is a 30 year climatology wrt 1981-2010

CHAPTER 02

Short term: Snow depth and albedo

Reanalysis	Assimilated data	Assimilation type	Time covered
ERA-Interim	surface, upper air, satellite	4D-var	1979- present
JRA55	surface, upper air, satellite	4D-var	1955- present
MERRA	surface, upper air, satellite	3D-var + IAU	1979- present
MERRA2	surface, upper air, satellite	3D-var + IAU	1979- present
20CRv2c	Surface pressure	Ens. Kalman filter	1851-2014

- Over 800 Russian meteorological stations with in-situ snow depth measurements. 13 which cover (more or less) the 20th century. Daily resolution. Stake measurements
- 2. 65 Russian meteorological stations with insitu radiation measurements for 2000-2013. Daily resolution.
- 3. 47 combined stations

We decided to focus on spring (MAMJ) to investigate snow albedo feedbacks

Averaged relative amount of missing values of daily albedo timeseries for MAMJ

ERAI MERRA STATION

Nearest grid analysis, daily res., MAMJ

Nearest grid analysis, daily res., MAMJ

Simple linear correlation between snow depth and albedo

Simple linear correlation between albedo and temperature

Nearest grid analysis, daily res., MAMJ

Snow depth

Ş

Surface albedo feedback

Ê

		Station	ERA- Interim	MERRA	MERRA2	JRA55	20CRv2c
	SAF	-2.05	-1.23	-1.54	-1.94	-1.43	-1.96
	SNC	-1.56	-0.93	-0.85	-1.23	-0.88	-1.5
	TEM	-0.49	-0.3	-0.69	-0.71	-0.55	-0.46
	Snow melt sensitivity	-3.49	-3.88	-3.65	-3.92	-3.59	-2.77
	albedo contrast	0.36	0.19	0.19	0.2	0.2	0.39
	snow albedo	0.57	0.34	0.31	0.33	0.34	0.55
	snow free albedo	0.2	0.15	0.12	0.13	0.14	0.16
	snow depths	18.28	16.67	15.84	20.80	19.83	28.54
	snow cover	39.34	54.21	57.3	59.75	46.20	59.87
	2m temperature	276.96	277.07	277.06	275.81	277.02	275.16
	albedo	0.37	0.25	0.27	0.28	0.25	0.39
SNC =	$(\overline{\alpha_{sn}})$	-0 08	α_{lan}	$(d^{-0.00}) \Delta S_{d}$	$c^{\Delta T_{21}}$	n no <i>n</i>	-0.07

CHAPTER 03

Summary

TAKE HOME MESSAGE

- 1. Snow in 20CR (much) too high
- 2. Snow depth correlation good
- 3. Diverging snow climates
- 4. Albedo variability bad
- 5. Relationship albedo snow bad in 20CR
- 6. Albedo over 100% snow prob. too low

Topography and reanalyses

20CRv2 downscaled with WRF to 2km over the Alpes

Wind gust speed in m s⁻¹

Simulated loss per km²

Topography and reanalyses

ERA20C downscaled with WRF to 2km over the Alpes

Brugnara et al. 2016

Precip 13 Dec 1916

Snow depth 13 Dec 1916

PERSONAL MESSAGE

Apply for a Swiss NSF PostDoc (Feb. 2018)

- Money to go to non-swiss institutions
- Travel, work and living for ca. 2 years
- Just need a host (table, seat + internet)
- And a good research idea

ANNEX

Low – high sea ice years 700 hPa

Discussion

Discussion

U wind