

中国气象科学研究院

Chinese Academy of Meteorological Sciences

Role of Tibetan Plateau in the Asian summer monsoon onset

Boqi Liu 2.27-3.3 2017,Beijing

OUTLINE

- 1.Asian summer monsoon (ASM) onset process
- 2.Effect of Tibetan Plateau (TP) on the ASM circulation
- 3.Influences of TP on the ASM onset

process:

4. Discussion: TP snow and ASM onset

Major Circulations of AASM

Definition of ASM onset dates

Asian summer monsoon onset criteria (ASMOC)

- The upper tropospheric (500–200 hPa) MTG changes from negative to positive and remains positive for more than 10 days;
- The wind direction change at 10-m height is greater than 100°;
- 3. The rainfall is steadily greater than 5 mm day⁻¹ over the ocean and 3 mm day⁻¹ over the land.

 Table 1
 Linear correlation coefficients of onset dates defined by the

 ASMOC in this study with others over the BOB, SCS, and India

BOB	
U850 (Mao and Wu 2007)	0.892
OLR (Mao and Wu 2007)	0.635
MTG (Mao and Wu 2007)	0.804
SCS	
Wang et al. (2004)	0.504
Wang and Wu (1997)	0.699
Tian and Wang (2010)	0.557
India	
Ananthakkrishnan and Soman (1988)	0.665
Wang and Wu (1997)	0.699
Taniguchi and Koike (2006)	0.739
Xavier et al. (2007)	0.678
Wang et al. (2009b)	0.734
Prasad and Hayashi (2005)	0.739

All values have passed the 99 % confidence level

[Liu et al., 2015, CD]

ASM onset process: transient characteristics

OUTLINE

1.Asian summer monsoon (ASM) onset process

2.Effect of Tibetan Plateau (TP) on the ASM circulation

3.Influences of TP on the ASM onset

process

4. Discussion: TP snow and ASM onset

Mechanical effect of TP on the ASM circulation

Boreal winter: TP-Dipole circulation

Spring permanent rainfall (SPR) only exists over East Asia, why?

TP-Dipole circulation could produce the low-level convergence over the South China in boreal spring to form the SPR.

[Wan and Wu, 2005; Wu et al., 2007]

TP becomes a heat source in boreal summer

Thermal effect of TP on the ASM circulation

Effects of sensible heating on the southern slope of TP as an air pump

Figure 2. Distributions of difference in wind (vectors, m s⁻¹) and vertical velocity ($-\omega$, shading, 10^{-2} Pa s⁻¹) at the $\sigma = 0.991$ surface between the two perpetual July experiments: (a) ALLSH–NOSH, (b) SLPSH–NOSH, and (c) TOPSH–NOSH, with the dashed rectangle indicating the prescribed mountain base. Left panels indicate the experiment designs and right panels are interpretations of the relevant mechanisms, with orange shading representing mountain and heavy red bar denoting the imposed surface sensible heating. See the text for details [56].

OUTLINE

1.Asian summer monsoon (ASM) onset process2.Effect of Tibetan Plateau (TP) on the ASM

circulation

3.Influences of TP on the ASM onset process

4. Discussion: TP snow and ASM onset

Why the ASM starts over the BOB in early May?

TP effect on the low-level circulation and the formation of BOB warm pool before ASM onset [Wu et al., 2012]

Why the ASM starts over the BOB in early May?

Monsoon onset barrier: a product of TP forcing

Sensible heating variation during BOBSM onset

[Liu et al., 2015]

Impacts of TP and tropical ocean on the ASM onset process

Interannual timescale: ENSO event is important for the onset time of ASM

For the BOB and Indian summer monsoon onset

[Liu et al., 2015]

As for the SCS summer monsoon, its interannual variation of its onset time is affected by the ENSO events the after 1993/94, before which it depends on the SST anomalies in the southern Indian Ocean.

Possible reason: Interdecadal variation of ENSO events

[Liu et al., 2016]

emy of Meteorological Sciences

OUTLINE

1.Asian summer monsoon (ASM) onset process
2.Effect of Tibetan Plateau (TP) on the ASM circulation

3.Influences of TP on the ASM onset

process

4. Discussion: TP snow and ASM onset

Uncertainty in the TP snow datasets

TP region: 70-105E, 25-40N, above 3000m

Data	Spatial Resolution	Period	Temporal Resolution	Data Source
Station Snow depth	92 stations	1951-2013	Daily/monthly	СМА
Station Max Snow depth	92 stations	1951-2013	monthly	CMA
Station Snow cover days	92 stations	1951-2013	monthly	CMA
Snow water equivalent	25km	197811-200705	monthly	NSIDC (SMMR SSM/I)
Snow Cover	25km	196611-201112	weekly	NSIDC (weekly NOAA Charts)
Snow Cover	89*89	196611-201405	monthly	Rutgers University Global Snow Lab(NOAA)
Snow depth	0.25*0.25	1979-2011	daily	CAREERI,CAS (SMMR SSM/I AMSR-E)

Large discrepancy among the existed datasets.

JRA-55

ERA-Interim

Total TP: 70-105E, 25-40N, above 3000m, 92 stations

Eastern TP: 85-105E, 25-40N, above 3000m,

Western TP: 70-84E, 25-40N, above 3000m,

daily result, climatology

Observing time: 08:00 Beijing time

Seasonal cycle of monthly max snow depth over the TP

Seasonal cycle of monthly snow cover days over the ETP

Definition of snow cover for the station observation:

Snow (including graupel, granular snow and ice particles) covers more than 50% of the ground seen from the weather station.

In Chinese:

雪(包括霰、米雪、冰粒)覆盖地面达到气象站四周能见面积一半以上。

How to identify the high and low snow years over the ETP?

	Dataset	Above normal	Below normal			
	Snow depth	1981/82 1982/83 1988/89 1995/96 1997/98 2007/08	1978/79 1980/81 <mark>1984/85</mark> 1996/97 1998/99 1999/00 2005/06 2009/10			
	Snow days	1982/83 1988/89 1989/90 1992/93 1994/95 1995/96 1997/98 2004/05 2007/08	1978/79 1980/81 <mark>1984/85</mark> 1986/87 1993/94 1996/97 1998/99 2002/03 2005/06 2009/10			
	CAREERI SD	1985/86 1989/90 <mark>1997/98</mark> 1999/00 2008/09	1981/82 1984/85 1987/88 1988/89 1993/94 1994/95 2000/01 2001/02 2003/04 2010/11			
	NSIDC SWE	1985/86 <mark>1997/98</mark> 1999/00 2004/05	1981/82 1984/85 1987/88 1992/93 1993/94 1994/95 2000/01 2001/02			
	NSIDC SC	1980/81 1982/83 1985/86 1988/89 1997/98 1999/00 2006/07 2007/08	1979/80 1981/82 1983/84 1984/85 1986/87 1991/92 1993/94 2000/01 2002/03 2005/06			
	Rutgers SC	1980/81 <mark>1982/83</mark> 1985/86 1997/98 1999/00 2004/05 2006/07 2007/08	1979/80 1981/82 1983/84 1984/85 1986/87 1991/992 1993/94 2000/01 2005/06 2008/09			
	N≥3	1982/83 1988/89 1997/98 2004/05 2007/08	1981/82 1984/85 1986/87 1993/94 2000/01 2005/06			
	High or low snow year appears at least in 3 datasets.					

Possible approaches of TP snow in the previous winter on the ASM onset: the snow-albedo and snow-hydrology feedbacks

Unsolved issues

- 1. Seasonal evolution of TP snow from boreal winter to summer and its relationship with the formation of TP heating source.
- 2. Modulation of TP snow on the ASM onset time on the interannual timescale, as well as its collaboration with the tropical oceanic influences.

Multi factors influencing the ASM onset

Thanks for your time, and welcome comments.