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The Concept

12h radar-derived totals (in mm)

Mostly we
want to
forecast
extreme

point-rainfall

Anticipate
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grid variability
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The (Innovative) Approach

We want to forecast rainfall for, let's say Louisiana, and the conditions are: mainly convection, light winds, in summer.
Then, we can pose the following question: how the model performed, at a short range, in other sites with similar

conditions (relatively flat areas, similar forecast conditions)?

‘-;

S | |

s

pr ST Dl
=00 4 o
".: |

b |
) g W

N
-

-

<> ECMWF

Errors at those sites, at
those times, provide a
good guide to assess the
model reliability for those
particular conditions and
indeed, provide a pdf to
post-process the
ensemble member that
predicted the same
conditions.



Extreme Weather in UK (mainly convective precipitation, light winds, medium values of total precipitation)
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The (Innovative) Approach

» Use of remote sites immediately provides a massive training dataset,
from a short training period (if we use global data)

» For calibration we focus on short range forecasts, to minimize random
errors

 The actual forecast itself can be for any lead time, for any gridbox

* In this way we create probabilistic forecasts for points, using global
conditional verification as a means of calibrating the raw gridbox forecast

The Approach with an Ensemble

» Here one adds together (and normalizes) the pdfs created as above for each ensemble member

« Each ensemble member may of course not predict the same meteorological conditions and those would
be post-processed in the same general way, but using training data for other contions (and values of other
variables as relevant, and as represented in those members)
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Compare Opginy With Fyigear

(where tp>=1) over all
available cases

Forecast Error Ratio

> FER = OnointF —FgridCA,

to determine

gridCAL

The efficacy/utility of this procedure
Creation of Multiple Mapping Functions for n physically
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A probability density function (pdf) for
all FER, Q(FER), can be generated.
It is called Mapping Function.

FER (All Cases)

OBS within + 25% of FC

OBS drier than the FC
L The model OVERESTIMATES

0OBS=0
when TP >=1

0OBS wetter than the FC
The model UNDERESTIMATES _

OBS 3 or more times wetter than
FC, more risk for flash floods,
depending on TP values

& significantly different Weather Types (WTSs)
to capture sub-grid variability within the model grid-
box and model biases.

Predictors to create the WTs
(= geographical / solar / raw model / derived parameters)

Current pre-operational version
» Convective Precipitation Fraction
« Total precipitation forecast
* Mean speed (in period) of steering winds at 700
mbar
« Convective available potential energy
» Clear Sky solar radiation, 24h accumulation

Future Research
« Complex orographic areas

 Coastal areas

* Rural and Urban areas

« Day, night, polar night
 Cloud cover

« Boundary layer depth

e Etc....




All cases
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Implied Mean "Bias" (gridbox scale) for different Weather Types
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12hr_accumulated_precip_20180125_18UTC.png
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Example
UK, 6 July 2017, 06-18 UTC

Mainly I-s
‘precipitation
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Mainly
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VERIFICATION

Long-term verification (April 2016 — March 2017) & different lead times (Day 1, 3, 5)

Reliability (Rank Histograms)
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Resolution Component (Area under the ROC curve)

Raw Model Point-Rainfall

Fig. 17, thr >= 50 mm/12h

T

Fig. 16, thr >= 20 mm/12h "~ Fig. 18, thr >= 100 mm/12h

By this metric, for “large” totals the Point Rain product is ~ as
skilful at day 5 as the Raw ENS is at day 1

=> Much better probabilistic flash flood predictions




