
Dr.Hook instrumentation tool

Sami Saarinen, Mats Hamrud, Deborah Salmond & John Hague

ECMWF, Shinfield Park, Reading
RG2 9AX, United Kingdom
sami.saarinen@ecmwf.int

ABSTRACT

Dr.Hook is a simple, low-overhead instrumentation tool, which allows you to keep track of dynamic calling tree of a
program and print it in the event of failure. It can also gather performance profiling information on a per subroutine basis,
which can be useful in estimating computational costs.

1 Introduction

The name Dr.Hook stems from Fujitsu VPP’s hook-function – a compiler option which allowed routines to be
intercepted upon entry and exit by a user defined ”hook”-function. The Dr.Hook-environment, unlike Fujitsu’s
system, is meant to be portable across all Unix-systems, controlled by environment variables without need to
recompile or relink.

In the recent years it has become more difficult to get reliable traceback upon failure. One reason is our complex
environment and use of multiple MPI-tasks and OpenMP-threads. Error messages from such processes are
often lost or can be quite misleading. As result much extra time has to be put into debugging. We wanted to
reduce this laborous debugging and instead (or in addition to) offer a more direct way of trapping errors.

Since the CY28 of IFS was a cleaning cycle, it was decided to insert automatically calls toDR_HOOK()-
function while entering and leaving any IFS/ARPEGE relatedsubroutine, a few thousand in total. This way the
Dr.Hook-environment could keep track of dynamic calling tree and upon failure produce informative Dr.Hook-
traceback.

As result of these calls we can hopefully fix programming errors much quicker than before without need to add
extra print statements or wonder for several days what may have gone wrong.

A nice ”by-product” of Dr.Hook-instrumentation is that we can also collect profiling information on resources
we spend in each instrumented routine. That is to say, we can collect routine call-counts, wall & CPU-times,
chase for memory peaks, check paging activities and so on. Furthermore we can produce a user-friendly report
at the end of execution per each MPI-task spread across everycomputional OpenMP-thread, if necessary.

A recent addition (CY28R1) to Dr.Hook system is possibilityto obtain MFlop/s-rates per OpenMP-thread
and MPI-task on the IBM Power4 machine. This greatly helps usto understand computational costs in
IFS/ARPEGE and may even aid benchmarking.

Dr.Hook is currently callable from both Fortran90 and C-routines.

1

SAMI SAARINEN , MATS HAMRUD , DEBORAH SALMOND & JOHN HAGUE: DR.HOOK

INSTRUMENTATION TOOL

2 Instrumentation

Every instrumented routine (here: just a generic SUBNAME) has the following coding norm:� at the top of the routine: enable access toYOMHOOK-module

USE YOMHOOK, ONLY : LHOOK, DR_HOOK� at the beginning of the routine (before the first executable statement)

REAL(KIND=JPRB) :: ZHOOK_HANDLE
IF (LHOOK) CALL DR_HOOK(’SUBNAME’,0,ZHOOK_HANDLE)� just beforeEND- or beforeanyRETURN- or CONTAINS-statements youmustcall

IF (LHOOK) CALL DR_HOOK(’SUBNAME’,1,ZHOOK_HANDLE)

The first call toDR_HOOK() adjusts the current dynamic calling tree by adding a new member to it. The last
call toDR_HOOK() removes routine’SUBNAME’ from this instantaneous calling tree.

If in addition performance profiling is on, then the Dr.Hook-system collects exact (as opposed to sampled)
performance profile on behalf of routine’SUBNAME’ and its descendants while in this routine.

If SUBNAME is a Fortran90 module procedure, then the name will contain the MODULE-name followed by
a colon before the routine name (for example:’GFL_SUBS:DEFINE_GFL_COMP’).

It is important to note that the variableZHOOK_HANDLE must be a local (stack) variable – i.e. not aSAVEd
variable. Its size has to be 8-bytes and the subroutine prototype requires it to be aREAL(8) floating point
number. Upon return from the firstDR_HOOK()-call it contains the address information to the Dr.Hook
internal data structure, where accounting information forthis particular routine (and of this OpenMP-thread) is
kept. The last call toDR_HOOK() in the routine will use the value of variableZHOOK_HANDLE as an address
to locate and update routine’s accounting records.

If ZHOOK_HANDLE gets overwritten between these two calls toDR_HOOK(), then the second call will pick
this it up immediately and raise an abort. This is an indication of either a genuine (stack variable) overwrite,
or more often that some descendant routine hasRETURNed before calling second time itsDR_HOOK(). The
latter case is easy to fix: just search for alternative exits andRETURN-statements from the descendant routines
and check whether any path to the second call ofDR_HOOK() exists at all.

The logical variableLHOOK is by default set to.TRUE. in moduleYOMHOOK. When the very first call to
DR_HOOK() takes place in a program, then all Dr.Hook-environment variables are examined. If it turns out
that Dr.Hook-facility was not turned on, then the logical variableLHOOK is set to.FALSE. and any further
dynamic calling tree processing will be disabled.

In the future there will be available a checker-program to ensure thatDR_HOOK() calls are entered correctly.

2

SAMI SAARINEN , MATS HAMRUD , DEBORAH SALMOND & JOHN HAGUE: DR.HOOK

INSTRUMENTATION TOOL

3 Environment variables

Environment variables are used to activate and drive Dr.Hook features. By default – if no variables are set –
Dr.Hook facility is turned off. All values (except filenames) are case insensitive in the following table.

Variable Description Values & remarks
DR HOOK Enable/disable Dr.Hook true or 1 activates Dr.Hook

false or 0 is the default
DR HOOK OPT A comma-separated list of:

calls or count Traceback will contain call counts
cputime or cpu Traceback contains CPU-times
walltime or wall Traceback contains wall clock times
times or time Union ofcputime andwalltime
heap or hwm Heap memory high water mark per routine
stack or stk Stack size monitoring per routine
rss Resident set size monitoring
paging or pag Paging activity monitoring per routine
memory or mem Union ofheap, stack, rss & paging
all Union ofmemory andtimes
prof or wallprof Activates wall clock time based profiling

Implies alsocalls andwalltime
Deactivatescpuprof

cpuprof Activates CPU-time based profiling
Implies alsocalls andcputime
Deactivateswallprof

hpmprof or hpm or mflops Activates MFlop/s profiling
Implieswallprof

trim Allow case insensitive input of routine name
Very expensive! Don’t use this!

self Include Dr.Hook in the profile output, too
noself Exclude Dr.Hook altogether from the profile

By default Dr.Hookis alwaysaccounted for,
but not printed in the profile output

DR HOOK PROFILE Filename(s) for the profile One profile-file per MPI-task
Use full path with.%d for MPL-task:
/path/file.%d,%d = 1::$NPES
The default:drhook.prof.%d
If the suffix (.%d) is missing, it
will be added automatically

DR HOOK PROFILEPROC MPL-task that produces profile The default = -1 i.e. all MPL-tasks
DR HOOK PROFILELIMIT Routines that consume at least The default = -10.0 (!)

this many percentages of (self-)time
resources will appear in the profile

Currently any of the optionsDR_HOOK_OPT="stack,paging,mflops" are only available for IBM
Power4 machines, but ports to Cray SV2 (for example) are underway.

3

SAMI SAARINEN , MATS HAMRUD , DEBORAH SALMOND & JOHN HAGUE: DR.HOOK

INSTRUMENTATION TOOL

In addition the following environment variables are available to Dr.Hook, too:

Variable Description Values & remarks
DR HOOK CATCH SIGNALS A comma separated list of The default = 0 i.e. no effect

additionalsignals to be caught Value = -1 activates all possible signals
DR HOOK IGNORE SIGNALS A comma separated list of The default = 0 i.e. no effect

signalsnot to be caught Value = -1 deactivates all possible signals
DR HOOK HASHBITS No. bits for hashing algorithm The default = 15 i.e. allocates a hash

data structure of 215 elements.
Between 1::24. Increase only if you
have thousands of routines to monitor

4 Caught signals

The following table shows what Unix-signals are caught by Dr.Hook-system. Please note that signalSIGXPU
(i.e. CPU-time exceeded) does not produce any profiling output, since it would cause Dr.Hook to catch
SIGXPU infinitely, since there is no CPU-time left! Otherwise profile is written even if signal has been caught,
since we believe it can still contain invaluable information.

Signal name Description Remarks
SIGABRT Abort execution
SIGBUS Bus error
SIGSEGV Segmentation violation
SIGILL Illegal instruction
SIGEMT EMT instruction N/A on Linux
SIGSTKFLT Stack fault Linux only; from 28R2 onwards
SIGFPE Floating-point exception
SIGTRAP Trace trap Should be switched off when debugging
SIGINT Interrupt
SIGQUIT Quit
SIGTERM Termination
SIGIO I/O now possible Typo; must be SIGIOT (fixed in CY28R2)
SIGXCPU CPU limit exceeded Ignoresatexit() i.e. no profiling
SIGSYS Bad system call

For actual signal numbers, please refer to yourman signal-command or have look at your Unix-system’s
include file/usr/include/signal.h (often in/usr/include/sys/signal.h). These are needed
if you want to use environment variablesDR_HOOK_CATCH_SIGNALS or DR_HOOK_IGNORE_SIGNALS
to activate/deactivate some signals.

Very often catching aSIGSEGV means serious memory overwrite, aSIGBUS that some subroutine argument
is missing or stack is corrupted, aSIGILL that illegal instruction is executed – say – corrupted or null function
call is attempted, aSIGFPU floating point arithmetic with uninitialized or invalid numbers, aSIGINT that
control-C is pressed (for interactive jobs), and so on.

4

SAMI SAARINEN , MATS HAMRUD , DEBORAH SALMOND & JOHN HAGUE: DR.HOOK

INSTRUMENTATION TOOL

5 Overhead

When dynamic calling tree is activated (but nothing else) overhead ofDR_HOOK()-calls seem to be around
1% in the current IFS/ARPEGE configurations on ECMWF’s IBM Power4. This seems to be a low price to
pay for enabling correct tracebacks, and thus reducing needfor extensive debugging and head scratching.

When the wall clock time profiling is on, overheads seem to be around 5%. And if the MFlop/s-rate counters
are activated, the overhead is still bearable 10-15%. And all these extra profiling options can be turned on via
environment variables, without need to recompile or relinkanything.

6 Some auxiliary routines

You can activate Dr.Hook’s signal catching feature to be able to produce at least system specific traceback
more reliably by calling routineC_DRHOOK_INIT_SIGNALS():

CALL C_DRHOOK_INIT_SIGNALS(1)

This instructs Dr.Hook’s signal handling functions to be onthe top of the list of the functions to be called in the
event of failure. And if Dr.Hook-facility was turned off youwill not get its dynamic calling tree, but system
specific traceback, which may or may not be accurate. See for exampleifs/setup/sumpini.F90.

When Dr.Hook has been activated, you can print instantaneous calling tree at any moment to a Fortran I/O-unit
by calling routineC_DRHOOK_PRINT():

INTEGER(4) :: IOUNIT, ITID, IOPT, INDENT
INTEGER(4),EXTERNAL :: GET_THREAD_ID

IOUNIT = 0 ! Fortran I/O-unit , say stderr
ITID = GET_THREAD_ID() ! 1 .. # of OpenMP-threads
IOPT = 2 ! Print current calling tree
INDENT = 0 ! Indentation; modified during the call

CALL C_DRHOOK_PRINT(IOUNIT, ITID, IOPT, INDENT)

! The variable INDENT now equals to no. of routines seen in the traceback

5

SAMI SAARINEN , MATS HAMRUD , DEBORAH SALMOND & JOHN HAGUE: DR.HOOK

INSTRUMENTATION TOOL

7 C-interface

Also C-routines can be instrumented under Dr.Hook-system.The interface (in CY28R1) to C is as follows:

#include "drhook.h" /* from "ifsaux/include/drhook.h" */

void subname()
{
/* Variable declarations */

DRHOOK_START(subname); /* as the first call to DR_HOOK() in Fortran90 */

/* or as a constant (compile-time evaluable) character string:
DRHOOK_START_BY_STRING("subname");

*/

/* The first actual executable statement */

/* The body of the routine "subname" goes here */

/* The last thing ;
the zero (0) below can be replaced with some size-information,
like the number of bytes processed or so */

DRHOOK_END(0);
return;

}

You can see first examples inodb/lib/codb.c andodb/include/codb.h. Please note that symbols
DRHOOK_START, DRHOOK_START_BY_STRING andDRHOOK_END are all simple and cheap C-macros,
which take care of declaring the Fortran90ZHOOK_HANDLE-equivalent inside the macros.

8 Source code and libraries

In CY28R1, Dr.Hook resides in IFSAUX, filesifsaux/support/drhook.c and include file
ifsaux/include/drhook.hand is therefore naturally built into librarylibifsaux.a. The Fortran90-
part resides in filesifsaux/module/yomhook.F90 andifsaux/support/dr_hook_*.F90.

Timers and memory routines needed are found mostly underifsaux/utilities/-directory. Some other
resource related routines are still found (for historical reasons) underodb/aux/util_ccode.c, but can
be found from fileifsaux/utilities/util_timers.c in CY28R2.

Dummies forHPM (High Performance Monitoring) for IBM are found underodb/lib/Dummies.c, in case
you hit problems with unsatisfied externals.

On IBM Power4 machine in order to activate theHPM-feature, you need to compile the file
ifsaux/support/drhook.cwith option-DHPM and link executable either with dummies
(-lodbdummy i.e. no runtimeHPM) or with HPM-libraries (at ECMWF the$LIBHPM equals to
-L/usr/pmapi/lib -lpmapi).

6

SAMI SAARINEN , MATS HAMRUD , DEBORAH SALMOND & JOHN HAGUE: DR.HOOK

INSTRUMENTATION TOOL

9 Future enhancements

After CY28R1 we will investigate ways to incorporate profiling of data movement. That is to say, we want to
get clearer picture on amounts of data transferred across MPI-processes and to be able to trace I/O-bottlenecks.

Furthermore we want to be able to show the filename of the routine being called. This is important for es-
pecially C-routines, where there maybe several routines sitting the same file making searching process more
difficult.

The Fortran90-interface toDR_HOOK() will in the future contain two more (optional) arguments: size infor-
mation (anINTEGER(4)) and the (source) filename parameters. In fact, the C-interface in cycle CY28R1
already contains this functionality and some ODB C-routines already benefit from these two extra arguments.
As an example, you could pass the number of bytes retrieved from a database, or decide that you want to see
how many rows of data satisfy a particular SQL-query condition. In both cases you could also opt for source
filename of the routine in concern.

The basic Dr.Hook without fancy MFlop/s-monitors, but withtraceback feature, will run at least on the fol-
lowing machines in CY28R2: IBM Power4 & Power3, Pentium/Linux and Silicon Graphics. We still have to
check how Fujitsu VPP5000 version will behave. Also port to Cray SV2 is underway; for example traceback
can already be produced correctly.

10 Known bugs or features

Dr.Hook-system cannot handle recursive function calls correctly i.e. profiling information for such routines
(and calling tree before the routine) will be incorrect. This will be fixed in the future. Meantime, remove
Dr.Hook from potentially recursive routines.

When a failure occurs on a non-master OpenMP-thread (i.e.> 1), the dynamic calling tree incorrecty prints
the full current calling tree of the master-thread before proceeding to print thread’s own tree. Although this
doesn’t matter too much, you will still see slightly misleading traceback and duplicate output of some routines
that were active in both master and slave thread during failure. This will fixed in the future, too.

The signal SIGIOT has mistakenly typed as SIGIO. The SIGIOT normally equals to SIGABRT. If you belive
that this incorrect coding causes problems and you want to remove SIGIO (normally #29) from the list of
Dr.Hook-catchable signals, you can ignore this signal via environment variable as follows (Korn-shell):

export DR_HOOK_IGNORE_SIGNALS=29

This typo will be fixed in CY28R2.

Acknowledgements

Thanks to Bob Walkup from IBM Watson Research for information about how to read theHPM-counters on
IBM Power4 machine.

7

SAMI SAARINEN , MATS HAMRUD , DEBORAH SALMOND & JOHN HAGUE: DR.HOOK

INSTRUMENTATION TOOL

Examples of Dr.Hook output from IFS:

8

	1 Introduction
	2 Instrumentation
	3 Environment variables
	4 Caught signals
	5 Overhead
	6 Some auxiliary routines
	7 C-interface
	8 Source code and libraries
	9 Future enhancements
	10 Known bugs or features

