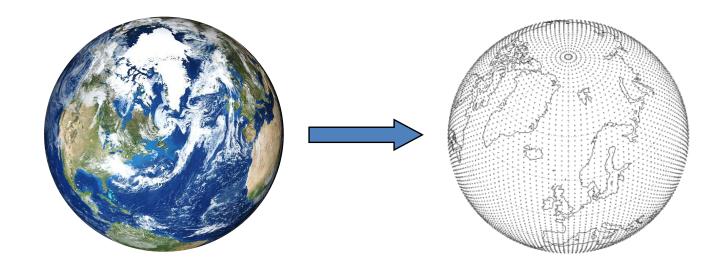
Introduction to GRIB and ecCodes

ecCodes GRIB Training Course

Xavier Abellan


Xavier.Abellan@ecmwf.int

What is GRIB?

GRIB is a binary format maintained by the World Meteorological Organization (WMO). It was designed to encode data produced by numerical weather prediction models

Acronyms:

GRIB => Initially "GRIdded Binary" but later expanded to "General Regularly-distributed Information in Binary form"

What does it look like?

GRIB is a byte-oriented data exchange format and has to be decoded by software according to the WMO standard rules.

It is not human-readable!

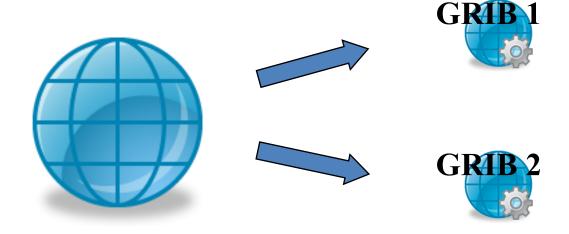
																						GRI			b	ĭÄЗ	m	
																										_	+	-
																						êÄ:					d@	ı
00	00	80	55	FØ	80	9C	40	00	00	00	00	43	3E	B0	71	00	00	00	00	00	00	Äl	J∉Ä	ú@	C	>∞q		
ØC	08	80	11	3C	1F	09	7C	00	00	37	37	37	37									Ä	<	I	777	7		

WMO Binary Codes

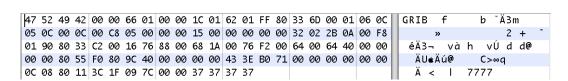
- Fully describes the GRIB coding standards
- It is the only authoritative source for the WMO binary codes GRIB
- It is publicly accessible on the WMO web site:

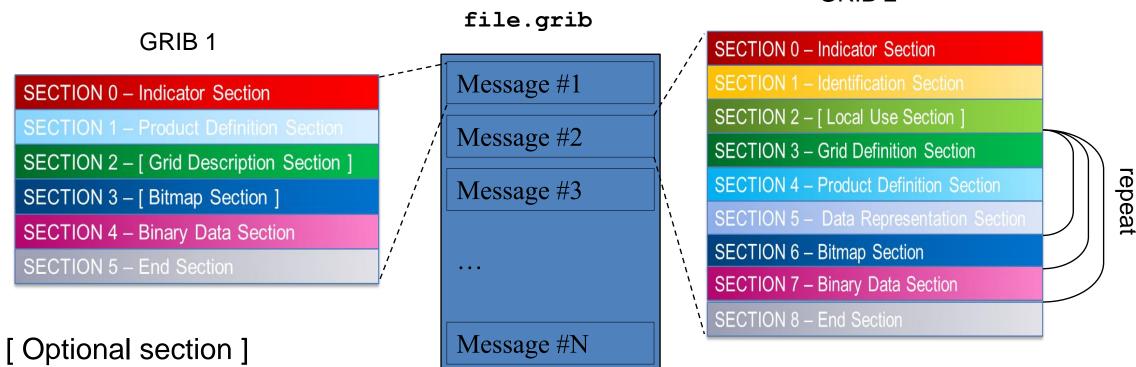
http://www.wmo.int/pages/prog/www/WMOCodes.html

- A revision of the full manual is published every three years
- A new version of the tables which are part of the manual is released externally twice a year
- Latest version of the tables is accessible in several formats from the WMO web site:


http://www.wmo.int/pages/prog/www/WMOCodes/WMO306_vI2/LatestVERSION/LatestVERSION.html

GRIB Edition 1 vs. 2


- Two different versions of the GRIB coding standard are available at the moment
 - edition 1 and 2
- The coding principles in both editions are similar, but their implementation is very different



GRIB Structure

- A file may contain one or more GRIB messages
- Each message contains several sections
- Data descriptors are self-defining
- A file can contain a mix of editions 1 and 2

GRIB 2

GRIB 1 & GRIB 2 – Major differences

- The coding principles for GRIB edition 1 and 2 are similar but their implementation is very different
- The structure of GRIB 1 and GRIB 2 messages is different
 - Both have sections but with different meanings
- In GRIB 2 several variables are defined with more precision
 - In GRIB 1 latitudes and longitudes are in mili-degrees
 - In GRIB 2 latitudes and longitudes are in micro-degrees
- In GRIB 2 longitude values must lie between 0° and 360°
- Encoding of the parameter is very different
- In GRIB 2 the description of the data (parameter, time, statistics, grid...) is template / table based
 - More flexible … but also more complex!

GRIB 1 & GRIB 2 – Legacy

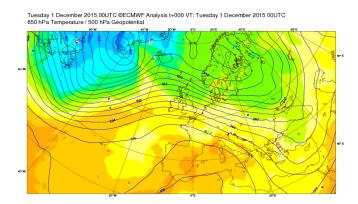
- GRIB edition 1 is a legacy WMO Code which is not accepted for GTS exchange anymore
- New versions of the tables/templates are only issued for GRIB edition 2

Usage of GRIB 2 at ECMWF?

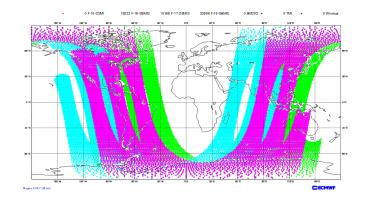
- Since 18 May 2011 all model level fields for HRES and are encoded in GRIB 2
- Most surface and all pressure level fields are encoded in GRIB 1
 - Some recently introduced surface fields are encoded in GRIB 2 (e.g. ptype)
- Staged migration of remaining GRIB 1 fields to GRIB 2 "will follow"

And what's not affected by this migration?

- The wave model
- The System-4 seasonal forecast model
- ERA-Interim



Introducing ecCodes

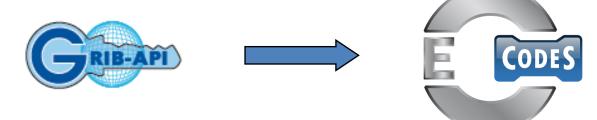

ecCodes is a package developed by ECMWF for decoding and encoding messages in the following formats:

- WMO FM-92 GRIB edition 1 and edition 2
- WMO FM-94 BUFR edition 3 and edition 4
- WMO GTS abbreviated header

We will cover only **GRIB** in this training course.

ECMWF Data Coverage (All obs DA) - Microwave imager
01/Dec/2015; 00 UTC
Total number of obs = 52084

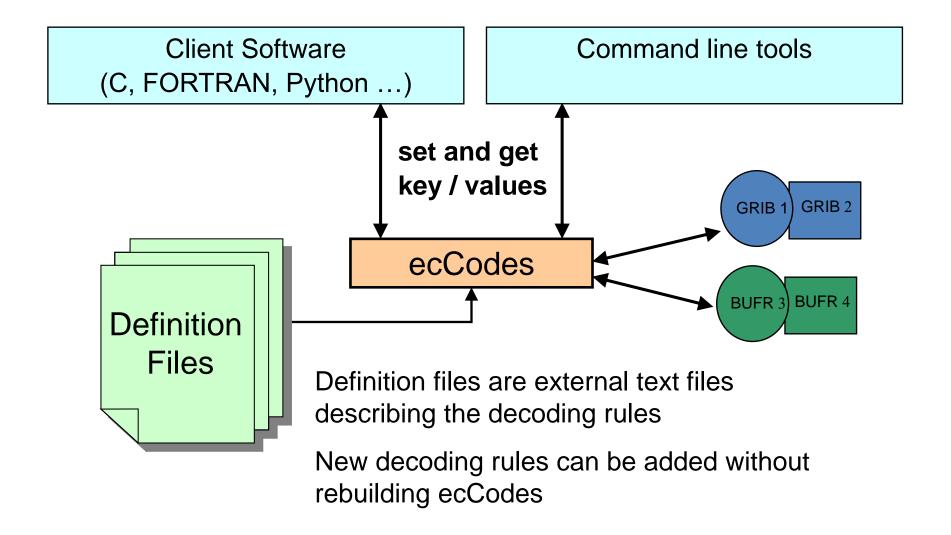
Introducing ecCodes


- The library includes:
 - a set of command line tools (the GRIB Tools) to provide a quick and easy way to manipulate data
 - Fortran 90, C and Python APIs
- It provides the user with a higher level of access, hiding the binary layer of the message
- It provides an easy and reliable way of encoding and decoding both GRIB 1 and GRIB 2 messages
- It decodes / encodes both GRIB editions with the SAME function calls
- Easily updated with new templates and tables.

ecCodes: Formerly known as GRIB-API

- ecCodes is an evolution of GRIB-API (with additional support for BUFR)
- For GRIB encoding and decoding, ecCodes provides the same functionality as GRIB-API
- ecCodes is now the primary GRIB decoding/encoding package used at ECMWF
- It is released under the Apache 2.0 license

GRIB-API will not be supported after end of 2018



ecCodes vs. older software

- Previous Fortran-based packages provided array-based access to the message.
 - ksec2(2) => Number of points along a parallel
 - ksec2(3) => Number of points along a meridian
 - ...
- ecCodes provides a key/value based approach
 - numberOfPointsAlongAParallel => Number of points along a parallel
 - numberOfPointsAlongAMeridan => Number of points along a meridian
 - ...

ecCodes architecture

ecCodes and GRIB editions 1 and 2

GRIB 1 coded	latitudeOfFirstGridPoint=40000							
GRIB 2 coded	latitudeOfFirstGridPoint=40000000							
Computed by ecCodes	latitudeOfFirstGridPointInDegrees=40							
GRIB 1 coded	<pre>dataRepresentationType=4 numberOfPointAlongAParallel=MISSING ijDirectionIncrementGiven=0 pl ={}</pre>							
GRIB 2 coded	<pre>gridDefinitionTemplateNumber=40 numberOfPointsAlongAParallel=MISSING iDirectionIncrementGiven=0 iDirectionIncrement=MISSING pl={}</pre>							
Computed by ecCodes	gridType=reduced_gg							

ecCodes: available interfaces

- C native interface exposes all the functionality (the engine itself is written in C)
- Fortran 90 provides an easy access to the main functionality of the library from Fortran 90
- Python provides access to the C functions from Python
- Tools provide a command line interface to the API
- All the interfaces provide a way to set/get the same key/values pairs from the messages

ecCodes: available interfaces (C)

```
h = codes_handle_new_from_file(context, in, PRODUCT_GRIB, &err);

codes_get_double(h, "latitudeOfFirstGridPointInDegrees", &lat1);

codes_set_long(h, "centre", centre);

codes_set_string(h, "date", date, &len);

codes_handle_delete(h);
```

Note: The functions with the "grib_" prefix are also supported for backward compatibility with grib_api

ecCodes: available interfaces (Fortran 90)

```
call codes_new_from_file(ifile, igrib, CODES_PRODUCT_GRIB, iret)

call codes_get(igrib, 'latitudeOfFirstGridPointInDegrees', lat1)

call codes_set(igrib, 'centre', centre)

call codes_set(igrib, 'date', '20070212')

call codes_release(igrib)
```

Note: The functions with the "grib_" prefix are also supported for backward compatibility with grib_api

ecCodes: available interfaces (Python)

```
gid = codes_new_from_file(f, CODES_PRODUCT_GRIB)

lat = codes_get(gid, 'latitudeOfFirstGridPointInDegrees')

codes_set(gid, 'centre', centre)

codes_set(gid, 'date', date)

codes_release(gid)
```

Note: The functions with the "grib_" prefix are also supported for backward compatibility with grib_api

ecCodes: available interfaces (tools)

grib_get -p latitudeOfFirstGridPointInDegrees input.grib

grib_set -s centre=ecmf,date=20070212 input.grib out.grib

ecCodes: downloading and installing

- ecCodes uses CMake for compilation and installation
- CMake is a cross-platform free software program for managing the build process of software using a compiler-independent method
- Download ecCodes from:

https://software.ecmwf.int/wiki/display/ECC/Releases

Installation instructions:

https://software.ecmwf.int/wiki/display/ECC/ecCodes+installation

ecCodes: Installation

- Linux or Mac platforms
 - Fairly recent cmake (>= 2.8.11) and GNU make
 - C compiler (gcc, icc, craycc)
- Optional, but recommended:
 - Fortran compiler for the Fortran bindings / Python for the Python bindings
 - Jasper / OpenJPEG for jpeg encoding
 - netCDF or netCDF4 for the grib_to_netcdf conversion tool

```
$> tar -xzf eccodes-x.y.z-Source.tar.gz
$> mkdir build ; cd build
$> PREFIX=/path/to/where/you/install/eccodes
$> cmake -DCMAKE_INSTALL_PREFIX=$PREFIX ../eccodes-x.y.z-Source
...
$> make
$> ctest
$> make install
```


ecCodes: What now?

- On a standard installation of ecCodes, in "/path/to/where/you/install/eccodes":
 - Before you can use the tools, add the relevant bit to the \$PATH variable:

```
$> export ECCODES_DIR=/path/to/where/you/install/eccodes
$> export PATH=$ECCODES DIR/bin:$PATH
```

You can compile and link your own program against ecCodes:

```
$> gfortran -o my_grib_program my_grib_program.f90 \
-I$ECCODES_DIR/include -L$ECCODES_DIR/lib -Wl,-rpath,$ECCODES_DIR/lib -leccodes_f90 -leccodes
```

To use the python interface, add the relevant bit to the \$PYTHONPATH variable:

```
$> export PYTHONPATH=$ECCODES DIR/lib/python2.7/site-packages:$PYTHONPATH
```

If working at ECMWF...

- No need to define PATH or PYTHONPATH. The software modules define some useful environment variables:
- \$> module load eccodes
- \$> gfortran -o my grib program my grib program.f90 \$ECCODES INCLUDE \$ECCODES LIB

Help and support

For issues, bugs and requests:

Software.Support@ecmwf.int

• E-learning introductory module:

https://www.ecmwf.int/assets/elearning/eccodes/eccodes1/story_html5.html

• Wiki:

https://software.ecmwf.int/wiki/display/ECC/ecCodes+Home

Please use the Forums for general discussions:

https://software.ecmwf.int/wiki/display/ECC/Forums

