Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

All the analysed parameters and many of the forecast parameters are described as "instantaneous". For more information on what this means, see Parameters valid at the specified time.

Mean rates/fluxes and accumulations

The accumulations (over the processing period) in the short forecasts (from 06 and 18 UTC) of ERA5 are treated differently compared with those in ERA-Interim and operational data (where the accumulations are from the beginning of the forecast to the validity date/time). In the short forecasts of ERA5, the accumulations are since the previous post processing (archiving), so for:

  • reanalysis: accumulations are over the hour (the processing period) ending at the validity date/time
  • ensemble: accumulations are over the 3 hours (the processing period) ending at the validity date/time
  • Monthly means (of daily means, stream=moda/edmo): accumulations have been scaled to have an "effective" processing period of one day, see section Monthly means

Mean rate/flux parameters in ERA5 (e.g. Table 4) provide similar information to accumulations (Table 3), except that they are expressed as temporal averages, over the same processing periods, instead of accumulations, and so have units of "per second".

  • Mean rate/flux parameters are easier to deal with than accumulations because the units do not vary with the processing period.
  • The mean rate hydrological parameters (e.g. the "Mean total precipitation rate") have units of "kg m-2 s-1", which are equivalent to "mm s-1". If you multiply by 86400 seconds (24 hours) you will produce the commonly used units of "mm day-1".

...

  • For the CDS time, or validity time, of 00 UTC, the mean rates/fluxes and accumulations are over the hour (3 hours for the EDA) ending at 00 UTC i.e. the mean or accumulation is during the previous day.
  • Mean rates/fluxes and accumulations are not available from the analyses.
  • Mean rates/fluxes and accumulations at step=0 have values of zero because the length of the processing period is zero.

...

  • Most hydrological parameters are in units of "m of water per day", so these should be multiplied by 1000 to convert to kg m-2 day-1 or mm day-1.
  • Energy (turbulent and radiative) and momentum fluxes should be divided by 86400 seconds (24 hours) to convert to the commonly used units of W m-2 and N m-2, respectively.

Anchor
Table4
Table4
Table 4: surface and single level parameters: mean rates/fluxes

(stream=oper/enda/mnth/moda/edmm/edmo, levtype=sfc)

countnameunitsVariable name in CDSshortNameparamIdanfc
1

Mean surface runoff rate

kg m**-2 s**-1

mean_surface_runoff_rate

msror

235020


x
2

Mean sub-surface runoff rate

kg m**-2 s**-1

mean_sub_surface_runoff_rate

mssror

235021


x
3

Mean snow evaporation rate

kg m**-2 s**-1

mean_snow_evaporation_rate

mser

235023


x
4

Mean snowmelt rate

kg m**-2 s**-1

mean_snowmelt_rate

msmr

235024


x
5

Mean large-scale precipitation fraction

Proportion

mean_large_scale_precipitation_fraction

mlspf

235026


x
6

Mean surface downward UV radiation flux

W m**-2

mean_surface_downward_uv_radiation_flux

msdwuvrf

235027


x
7

Mean large-scale precipitation rate

kg m**-2 s**-1

mean_large_scale_precipitation_rate

mlspr

235029


x
8

Mean convective precipitation rate

kg m**-2 s**-1

mean_convective_precipitation_rate

mcpr

235030


x
9

Mean snowfall rate

kg m**-2 s**-1

mean_snowfall_rate

msr

235031


x
10

Mean boundary layer dissipation

W m**-2

mean_boundary_layer_dissipation

mbld

235032


x
11

Mean surface sensible heat flux

W m**-2

mean_surface_sensible_heat_flux

msshf

235033


x
12

Mean surface latent heat flux

W m**-2

mean_surface_latent_heat_flux

mslhf

235034


x
13

Mean surface downward short-wave radiation flux

W m**-2

mean_surface_downward_short_wave_radiation_flux

msdwswrf

235035


x
14

Mean surface downward long-wave radiation flux

W m**-2

mean_surface_downward_long_wave_radiation_flux

msdwlwrf

235036


x
15

Mean surface net short-wave radiation flux

W m**-2

mean_surface_net_short_wave_radiation_flux

msnswrf

235037


x
16

Mean surface net long-wave radiation flux

W m**-2

mean_surface_net_long_wave_radiation_flux

msnlwrf

235038


x
17

Mean top net short-wave radiation flux

W m**-2

mean_top_net_short_wave_radiation_flux

mtnswrf

235039


x
18

Mean top net long-wave radiation flux

W m**-2

mean_top_net_long_wave_radiation_flux

mtnlwrf

235040


x
19

Mean eastward turbulent surface stress

N m**-2

mean_eastward_turbulent_surface_stress

metss

235041


x
20

Mean northward turbulent surface stress

N m**-2

mean_northward_turbulent_surface_stress

mntss

235042


x
21

Mean evaporation rate

kg m**-2 s**-1

mean_evaporation_rate

mer

235043


x
22

Mean eastward gravity wave surface stress

N m**-2

mean_eastward_gravity_wave_surface_stress

megwss

235045


x
23

Mean northward gravity wave surface stress

N m**-2

mean_northward_gravity_wave_surface_stress

mngwss

235046


x
24

Mean gravity wave dissipation

W m**-2

mean_gravity_wave_dissipation

mgwd

235047


x
25

Mean runoff rate

kg m**-2 s**-1

mean_runoff_rate

mror

235048


x
26

Mean top net short-wave radiation flux, clear sky

W m**-2

mean_top_net_short_wave_radiation_flux_clear_sky

mtnswrfcs

235049


x
27

Mean top net long-wave radiation flux, clear sky

W m**-2

mean_top_net_long_wave_radiation_flux_clear_sky

mtnlwrfcs

235050


x
28

Mean surface net short-wave radiation flux, clear sky

W m**-2

mean_surface_net_short_wave_radiation_flux_clear_sky

msnswrfcs

235051


x
29

Mean surface net long-wave radiation flux, clear sky

W m**-2

mean_surface_net_long_wave_radiation_flux_clear_sky

msnlwrfcs

235052


x
30

Mean top downward short-wave radiation flux

W m**-2

mean_top_downward_short_wave_radiation_flux

mtdwswrf

235053


x
31

Mean vertically integrated moisture divergence

kg m**-2 s**-1

mean_vertically_integrated_moisture_divergence

mvimd

235054


x
32

Mean total precipitation rate

kg m**-2 s**-1

mean_total_precipitation_rate

mtpr

235055


x
33

Mean convective snowfall rate

kg m**-2 s**-1

mean_convective_snowfall_rate

mcsr

235056


x
34

Mean large-scale snowfall rate

kg m**-2 s**-1

mean_large_scale_snowfall_rate

mlssr

235057


x
35

Mean surface direct short-wave radiation flux

W m**-2

mean_surface_direct_short_wave_radiation_flux

msdrswrf

235058


x
36

Mean surface direct short-wave radiation flux, clear sky

W m**-2

mean_surface_direct_short_wave_radiation_flux_clear_sky

msdrswrfcs

235059


x
37

Mean surface downward short-wave radiation flux, clear sky

W m**-2

mean_surface_downward_short_wave_radiation_flux_clear_sky

msdwswrfcs

235068


x
38

Mean surface downward long-wave radiation flux, clear sky

W m**-2

mean_surface_downward_long_wave_radiation_flux_clear_sky

msdwlwrfcs

235069


x
39

Mean potential evaporation rate

kg m**-2 s**-1

mean_potential_evaporation_rate

mper

235070


x

The mean rates/fluxes in Table 4 provide similar information to the accumulations in Table 3, except that they are expressed as temporal averages instead of accumulations, and so have units of "per second". The hydrological parameters are in units of "kg m-2 s-1" and so they can be multiplied by 86400 seconds (24 hours) to convert to kg m-2 day-1 or mm day-1.

...