Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Note that in the tables below, "an" and "fc" is just a label used for convention to archive the data in MARS. 

Table 1: stream=oper/mnth/moda, levtype=sfc: surface parameters: instantaneous


name

units

Variable name in CDS

shortName

paramId

an

fc

GRIB1GRIB2Used as forcing field
1

Lake mix-layer temperature

K

lake_mix_layer_temperature

lmlt

228008

x


x

2

Lake mix-layer depth

m

lake_mix_layer_depth

lmld

228009

x


x

3

Lake bottom temperature

K

lake_bottom_temperature

lblt

228010

x


x

4

Lake total layer temperature

K

lake_total_layer_temperature

ltlt

228011

x


x

5

Lake shape factor

dimensionless

lake_shape_factor

lshf

228012

x


x

6

Lake ice temperature

K

lake_ice_temperature

lict

228013

x


x

7

Lake ice depth

m

lake_ice_depth

licd

228014

x


x

8Snow cover%snow_coversnowc260038
x
x
9Snow depthmsnow_depthsde3066
x
x
10

Snow albedo

(0 - 1)

snow_albedo

asn

32

x


x

11

Snow density

kg m**-3

snow_density

rsn

33

x


x

12

Volumetric soil water layer 11

m**3 m**-3

volumetric_soil_water_layer_1

swvl1

39

x


x

13

Volumetric soil water layer 21

m**3 m**-3

volumetric_soil_water_layer_2

swvl2

40

x


x

14

Volumetric soil water layer 31

m**3 m**-3

volumetric_soil_water_layer_3

swvl3

41

x


x

15

Volumetric soil water layer 41

m**3 m**-3

volumetric_soil_water_layer_4

swvl4

42

x


x

16

Leaf area index, low vegetation2

m**2 m**-2

leaf_area_index_low_vegetation

lai_lv

66


x

x

17

Leaf area index, high vegetation2

m**2 m**-2

leaf_area_index_high_vegetation

lai_hv

67


x

x

18

Surface pressure

Pa

surface_pressure

sp

134


x

x
x
19

Soil temperature level 11

K

soil_temperature_level_1

stl1

139

x


x

20

Snow depth water equivalent

m of water equivalent

snow_depth_water_equivalent

sd

141

x


x

21

10 metre U wind component

m s**-1

10m_u_component_of_wind

u10

165


x

x
x
22

10 metre V wind component

m s**-1

10m_v_component_of_wind

v10

166


x

x
x
23

2 metre temperature

K

2m_temperature

2t

167


x

x

24

2 metre dewpoint temperature

K

2m_dewpoint_temperature

2d

168


x

x

25

Soil temperature level 21

K

soil_temperature_level_2

stl2

170

x


x

26

Soil temperature level 31

K

soil_temperature_level_3

stl3

183

x


x

27

Skin reservoir content

m of water equivalent

skin_reservoir_content

src

198

x





28

Skin temperature

K

skin_temperature

skt

235

x


x

29

Soil temperature level 41

K

soil_temperature_level_4

stl4

236

x


x

30

Temperature of snow layer

K

temperature_of_snow_layer

tsn

238

x


x

31

Forecast albedo

(0 - 1)

forecast_albedo

fal

243


x

x

...

Leaf Area Index (LAI) parameters are based on a monthly climatology as explained IFS model documentation CY45R1. So the user will only see monthly variability, but not inter-annual variability.


Table 2: stream=oper/mnth/moda, levtype=sfc: surface parameters: accumulations


name

units

Variable name in CDS

shortName

paramId

an

fc

GRIB1GRIB2Used as forcing field
1

Surface runoff

m

surface_runoff

sro

8


x

x

2

Sub-surface runoff

m

sub_surface_runoff

ssro

9


x

x

3

Snowmelt

m of water equivalent

snowmelt

smlt

45


x

x

4

Snowfall

m of water equivalent

snowfall

sf

144


x

x
x
5Surface sensible heat fluxJ m**-2surface_sensible_heat_fluxsshf146
xx

6Surface latent heat fluxJ m**-2surface_latent_heat_fluxslhf147
xx

7Surface solar radiation downwardsJ m**-2surface_solar_radiation_downwardsssrd169
xx
x
8Surface thermal radiation downwardsJ m**-2surface_thermal_radiation_downwardsstrd175
xx
x
9Surface net solar radiationJ m**-2surface_net_solar_radiationssr176
xx
x
10Surface net thermal radiationJ m**-2surface_net_thermal_radiationstr177
xx
x
11

Total Evaporation

m of water equivalent

total_evaporation

e

182


x

x

12

Runoff

m

runoff

ro

205


x

x

13

Total precipitation

m

total_precipitation

tp

228


x

x
x
14Evaporation from the top of canopym of water equivalentevaporation_from_the_top_of_canopyevatc228100
x
x
15Evaporation from bare soilm of water equivalentevaporation_from_bare_soilevabs228101
x
x
16Evaporation from open water surfaces excluding oceansm of water equivalentevaporation_from_open_water_surfaces_excluding_oceansevaow228102
x
x
17Evaporation from vegetation transpirationm of water equivalentevaporation_from_vegetation_transpirationevavt228103
x
x
18

Potential evaporation

m

potential_evaporation

pev

228251


x

x

Accumulations are described in section 140385203 ERA5-Land: data documentation#accumulations. The accumulations in monthly means (stream=moda/mnth) are described in section monthly means

How to use lake-related fields

...

The ECMWF model also contains an ice module, a snow module and a bottom sediments module. The present setup of the IFS is running with no bottom sediment and snow modules (snow accumulation over ice is not allowed and snow parameters are used only for albedo purposes). In the implementation in the IFS lake ice can be fractional within a grid-box with inland water (10 cm of ice means 100 % of a grid-box or tile is covered with ice; 0 cm of ice means 100 % of the grid-box is covered by water; in between a linear interpolation is applied) (Manrique-Sunen et al., 2013). At present, the water balance equation is not included for lakes and the lake depth and surface area are kept constant in time (IFS Documentation, 2017, chapter 8 and 11 ). Lake parametrization also requires the lake fraction CL, lake depth DL (preferably bathymetry), and lake initial conditions. DL is the most important external parameter that uses the lake parametrization.

Known issues


  • Expand
    titleUncertainty fields

    As it was done for ERA5, the original plan for ERA5-Land was to provide an estimate of the uncertainty fields based on a dedicated 10-member ensemble run. The latter generated an ensemble of forcing fields that should, in principle, reproduce the space of uncertainty for the land surface fields. The first experiments demonstrated that the spread of the ensemble was clearly under dispersive, i.e. the uncertainty was unrealistically low. A reason for this is the low spread shown by the ensemble of ERA5 forcing fields.

    As a result of these experiments we took the decision of not providing the uncertainty fields of ERA5-Land. The opposite would have assigned, for instance, unrealistically high confidence to ERA5-land fields in a data assimilation experiment. 

    Our recommendation is, for the time being, to use the uncertainty estimate of the corresponding ERA5 field, which should provide a second order approximation to the estimate of the real uncertainty. Future experiments will also perturbe, among other, key land surface model parameters, therefore providing a more realistic spread of the ERA5-Land ensemble surface fields.


  • Three components of the total evapotranspiration have values swapped as follows:

    - variable "Evaporation from bare soil" (mars parameter code 228101 (evabs)) has the values corresponding to the "Evaporation from vegetation transpiration" (mars parameter 228103 (evavt)),
    - variable "Evaporation from open water surfaces excluding oceans (mars parameter code 228102 (evaow)) has the values corresponding to the "Evaporation from bare soil" (mars parameter code 228101 (evabs)),
    - variable "Evaporation from vegetation transpiration" (mars parameter code 228103 (evavt)) has the values corresponding to the "Evaporation from open water surfaces excluding oceans" (mars parameter code 228102 (evaow)).


  • Expand
    titleLow values of snow cover and snow depth on the eastern side of the Antarctic ice sheet

    Low values of snow cover and snow depth were found on the eastern side of the Antarctic ice sheet, as shown in Fig. 1. The issue is due to the application of an old glacier mask to the Antarctica, which excludes the patch shown in the figure as glacier. Inaccuracies in the glacier mask are due to errors in satellite measurements datasets. While, due to the lower horizontal resolution, in ERA5 this ice sheet part is a sea point, in ERA5-Land the area is categorised as land without an initial ice mass. Since the initialization doesn't consider a glacier there (estimated at a constant 10 m of snow water equivalent), the low amount of precipitation along with potential excess of sublimation makes them to obtain unrealistic low numbers there.

     

    Fig 1: ERA-Land Snow depth (m of water equivalent) on 01-01-2015 eastern side of the Antarctic ice sheet.


...