Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Table of Contents
maxLevel2

Easy Heading Macro


Overview

The Global Fire Assimilation System (GFAS) assimilates fire radiative power (FRP) observations from satellite-based sensors to produce daily estimates of biomass burning emissions. It has been extended to include information about injection heights derived from fire observations and meteorological information from the operational weather forecasts of ECMWF.

FRP observations currently assimilated in GFAS are the NASA Terra MODIS and Aqua MODIS active fire products (http://modis-fire.umd.edu/).

GFAS data includes: Fire Radiative Power (FRP), dry matter burnt and biomass burning emissions.

Data are available globally on a regular lat-lon grid with horizontal resolution of 0.1 degrees from 2003 to present. The features of the current version of GFAS (GFAS v1.2) are:

  • Injection height daily data (Mean altitude of maximum injection and Altitude of plume top) as provided by a Plume Rise Model
  • Pixel based quality control for MODIS/Aqua and Terra and SEVIRI observations
  • Statistical regression of the output when assimilating only Aqua or Terra observations so as to preserve consistency with data obtained assimilating Aqua and Terra observations

...

  • Francesca Di Giuseppe, Samuel Rémy, Florian Pappenberger, and Fredrik Wetterhall, 2018: Combining fire radiative power observations with the fire weather index improves the estimation of fire emissions, Atmos. Chem. Phys. Discuss.18, 5359–5370, https://doi.org/10.5194/acp-2017-790

  • Rémy, S., A. Veira, R. Paugam, M. Sofiev, J. W. Kaiser, F. Marenco, S. P. Burton, A. Benedetti, R. J. Engelen, R. Ferrare, and J. W. Hair, 2017: Two global data sets of daily fire emission injection heights since 2003, Atmos. Chem. Phys., 17, 2921-2942, https://doi.org/10.5194/acp-17-2921-2017.
  • N. Andela (VUA), J.W. Kaiser (ECMWF, KCL), A. Heil (FZ Jülich), T.T. van Leeuwen (VUA), G.R. van der Werf (VUA), M.J. Wooster (KCL), S. Remy (ECMWF) and M.G. Schultz (FZ Jülich), Assessment of the Global Fire Assimilation System (GFASv1). [PDF]
  • Kaiser, J. W., Heil, A., Andreae, M. O., Benedetti, A., Chubarova, N., Jones, L., Morcrette, J.-J., Razinger, M., Schultz, M. G., Suttie, M., and van der Werf, G. R. (2012). Biomass burning emissions estimated with a global fire assimilation system based on observed fire radiative power. BG, 9:527-554. [PDF]
  • Xu et al. (2010) New GOES imager algorithms for cloud and active fire detection and fire radiative power assessment across North, South and Central America. RSE Vol. 114
  • Heil et al. (2010) Assessment of the Real-Time Fire Emissions (GFASv0) by MACC, ECMWF Tech. Memo No. 628 [PDF]
  • Di Giuseppe, F, Remy, S, Pappenberger, F, Wetterhall, F (2016): Improving GFAS and CAMS biomass burning estimations by means of the Global ECMWF Fire Forecast system (GEFF), ECMWF Tech. Memo No. 790 [PDF]
icon
Info
false

This document has been produced in the context of the Copernicus

Atmosphere

Atmosphere Monitoring Service (CAMS).

The activities leading to these results have been contracted by the European Centre for Medium-Range Weather Forecasts, operator of CAMS on behalf of the European Union (Delegation Agreement signed on 11/11/2014). All information in this document is provided "as is" and no guarantee or warranty is given that the information is fit for any particular purpose.

The users thereof use the information at their sole risk and liability. For the avoidance of all doubt, the European Commission and the European Centre for Medium-Range Weather Forecasts have no liability in respect of this document, which is merely representing the author's view.

Content by Label
showLabelsfalse
max5
spacesCKB
showSpacefalse
sortmodified
reversetrue
typepage
cqllabel = "cams" and type = "page" and space = "CKB"
labelsera5

...