...
Expand | ||
---|---|---|
| ||
The data in the native grid can be accessed from MARS using the keywords class="l5" and expver=0001. Subdivisions of the data are labelled using the keywords 'stream' and 'type'. The keyword 'levtype' should be set to 'sfc' for all the fields in ERA5-Land. Stream:
Type (for convention):
Levtype:
|
Convention used in MARS: the date and time of the data is specified with three MARS keywords, 'date', 'time' and 'step'. For parameters labelled as analyses (see list of parameters), step=0 hours so that date and time specify the analysis time. All forecasts start at 00UTC (time=00 hours), and for parameters labelled as forecasts (see list of parameters), date specifies the forecast start day and step specifies the number of hours since the start of the forecast, with a maximum of step=24 hours. The combination of date, time and forecast step defines the validity date/time. For analyses, the validity date/time is equal to the analysis date/time.
...
For sub-daily data for the HRES (stream=oper) the parameters labelled as analyses (type=an) are available hourly. The once daily short forecasts, run from 00 UTC, also provide data hourly, with steps from 01 to 24. The uncertainty is currently provided by ERA5 EDA fields, which are available every 3 hours for the surface fields.
Data update frequency
Initial release data, i.e. data with just a few days behind real time, is called ERA5-Land-T. Both for the CDS and MARS, daily updates for ERA5-Land-T are available about 5 days behind real time and monthly mean updates are available about 5 days after the end of the month.
...
- Synoptic monthly means, for each particular time and forecast step (stream=mnth) - in the CDS, referred to as "monthly averaged by hour of day".
- Monthly means of daily means, for the month as a whole (stream=moda) - in the CDS, referred to as "monthly averaged". These monthly means are created from the hourly data for the HRES.
Monthly means for:
- parameters labelled as analyses or instantaneous forecasts are created from data with a valid time in the month, between 00 and 23 UTC on each day of the month.
- accumulations are created from data with a forecast period falling within the month. Monthly means of daily means for accumulations are created from the last forecast step (24) of the forecasts for each day of the month.
...
Parameters described as "instantaneous" in Table 2 are valid at the specified time.
Note that in the tables below, "an" and "fc" is just a label used for convention to archive the data in MARS.
Note |
---|
Please note that with the release of the latest version of ecCodes, some shortNames and names have changed. As a result, some of the shortNames in the tables below will need to be updated. Until this is completed, please use the relevant entry in the parameter database as official reference for the shortNames and names. |
Table 1: surface parameters: invariants (in time)
...
ERA5-Land forecast parameters are missing for the validity time of 1st January 1950 00 UTC.
Expand title Uncertainty fields As it was done for ERA5, the original plan for ERA5-Land was to provide an estimate of the uncertainty fields based on a dedicated 10-member ensemble run. The latter generated an ensemble of forcing fields that should, in principle, reproduce the space of uncertainty for the land surface fields. The first experiments demonstrated that the spread of the ensemble was clearly under dispersive, i.e. the uncertainty was unrealistically low. A reason for this is the low spread shown by the ensemble of ERA5 forcing fields.
As a result of these experiments we took the decision of not providing the uncertainty fields of ERA5-Land. The opposite would have assigned, for instance, unrealistically high confidence to ERA5-land fields in a data assimilation experiment.
Our recommendation is, for the time being, to use the uncertainty estimate of the corresponding ERA5 field, which should provide a second order approximation to the estimate of the real uncertainty. Future experiments will also perturbe, among other, key land surface model parameters, therefore providing a more realistic spread of the ERA5-Land ensemble surface fields.
Expand title Swapped value of the components of the total evapotranspiration Three components of the total evapotranspiration have values swapped as follows:
- variable "Evaporation from bare soil" (mars parameter code 228101 (evabs)) has the values corresponding to the "Evaporation from vegetation transpiration" (mars parameter 228103 (evavt)),
- variable "Evaporation from open water surfaces excluding oceans (mars parameter code 228102 (evaow)) has the values corresponding to the "Evaporation from bare soil" (mars parameter code 228101 (evabs)),
- variable "Evaporation from vegetation transpiration" (mars parameter code 228103 (evavt)) has the values corresponding to the "Evaporation from open water surfaces excluding oceans" (mars parameter code 228102 (evaow)).
Expand title Low values of snow cover and snow depth on the eastern side of the Antarctic ice sheet Low values of snow cover and snow depth were found on the eastern side of the Antarctic ice sheet, as shown in Fig. 1. The issue is due to the application of an old glacier mask to the Antarctica, which excludes the patch shown in the figure as glacier. Inaccuracies in the glacier mask are due to errors in satellite measurements datasets. While, due to the lower horizontal resolution, in ERA5 this ice sheet part is a sea point, in ERA5-Land the area is categorised as land without an initial ice mass. Since the initialization doesn't consider a glacier there (estimated at a constant 10 m of snow water equivalent), the low amount of precipitation along with potential excess of sublimation makes them to obtain unrealistic low numbers there.
Fig 1: ERA-Land Snow depth (m of water equivalent) on 01-01-2015 eastern side of the Antarctic ice sheet.
Expand title Limited impact from sub-optimal tropical cyclones in the forcing from the ERA5 preliminary dataset for 1950-1978. From 1950-1978 ERA5-Land was forced by the preliminary ERA5 back extension which has a sub-optimal representation for a number of tropical cyclones.
The over-estimation of a number of tropical cyclones for this period affects some products over the oceans in the vicinity of tropical cyclone tracks. Over land much smaller impact is expected, and therefore, the effect on the ERA5-Land product from 1950-1978 is more limited.
This is supported by the figure below that plots, for each location, the minimum pressure from the ERA5 forcing (top panels) and the maximum daily accumulated total precipitation for ERA5-Land (lower panels) for the (preliminary) back extension (left panels) and for the period from the late 1970s to 2010 inclusive (right panels). Note that these show the most extreme situations, i.e., the absolute extremes in the about 30-year periods that were considered in each plot. Less extreme statistics, like 99, 95 (etc.) percentiles or mean distributions will show a much smaller impact of tropical cyclones.
From these panels it is seen that for the forcing from ERA5 (top panels), in general, local minimum pressure is similar between 1950-1978 and 1979-2010. There are of course sampling differences between the two, each about 30-year, periods. Large differences that are likely related to anomalously strong tropical cyclones are very localized, such as for some areas over North Australia, East Madagascar, Philippines and Northeast China. Note again that these affect a few cases only in the 29-year dataset.
The effect on the ERA5-Land precipitation is shown in the lower panels. Even for these extremes it is difficult to pin-point locations that could be affected by anomalous tropical cyclones.
Caption: locally minimum of 6-hourly pressure for ERA5 forcing data (top panels) and maximum daily total precipitation (lower panels) over the indicated period of time for the back extension (left panels) and for later periods (right panels). Numbers represent the averages for the locally extreme values over the indicated areas.
Expand title Definition of Potential Evaporation (PEV) modified Note that on 18-11-2021 we modified the definition of Potential Evaporation (PEV) provided in the CDS catalogue entry for both, the hourly and the monthly fields. The reason is that until this date the definition of PEV was similar to that of the same field provided by ERA5, whereas in reality they are computed differently:
- PEV in ERA5 is computed for agricultural land as if it is well watered (no soil moisture stress) and assuming that the atmosphere is not affected by this artificial surface condition.
- PEV in ERA5-Land is computed as an open water evaporation (Pan evaporation) and assuming that the atmosphere is not affected by this artificial surface condition.
Expand title Incorrect values of monthly averaged reanalysis of accumulated fields from September 2022 to February 2024 An issue with the ERA5-Land monthly averaged data from 1950 to present dataset was identified in January 2024 on both CDS discs and MARS tapes. It affects the following part of the dataset:
Product: Monthly averaged reanalysis
Time period: from September 2022 to February 2024
Area: Global
Variables: all accumulated variables (please refer to Table 3 in ERA5-Land documentation)
Incorrect data for period September 2022 to February 2024 is no longer available to download using the interactive CDS Download data form over the web, but remains accessible for the time being via CDS API or direct MARS access.
Incorrect data from September 2022 to February 2024 will not be replaced on CDS discs nor MARS tapes. Instead users can recover the same (and correct) data using the product monthly averaged reanalysis by hour of day at 00:00.
A fix was implemented for ERA5-Land monthly averaged data stored on CDS discs in time for the release of March 2024 monthly averaged data (i.e. from March 2024 onwards).
Resolved issues
- ERA5-Land-T rewritten 1st - 6th January 2025: At the turn of 2025, an unfortunate technical issue with the production of ERA5 resulted in a large part of satellite observations not being used. This led to small but systematic differences, impacting mainly humidity in the tropics, and in lesser extent other ERA5 parameters as well from the 1st of January 2025 onwards. The issue was resolved and ERA5T and ERA5-Land-T were rewritten with the correct data from 12 UTC 1st January to 12 UTC 6th January 2025. The consolidated ERA5 and ERA5-Land will contain these corrected values.
...