Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.
Comment: Confirmed.

...

[1]    Askne J, Nordius H. Estimation of tropospheric delay for microwaves from surface weather data. Radio Science. 1987; 22:379-386.
[2]    Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., Ware, R. H., GPS meteorology: Remote sensing of atmospheric water vapor using the Global Positioning System, J. Geophys. Res., 97, 15787–15801, 1992.
[3]    Guerova, G., Jones, J., Dousa, J., Dick, G., Haan, S., Pottiaux, E., Bock, O., Pacione, R., Elgered, G., Vedel, H., Bender, M. Review of the state-of-the-art and future prospects of the ground-based GNSS meteorology in Europe, Atmos. Meas. Tech. Discuss. 1-34, 2016, 10.5194/amt-2016-125.
[4]    Borre, K., Strang, G., Linear Algebra, Geodesy and GPS, Wellesley-Cambridge Press, 1997, ISBN 10: 0961408863, 638 pp.
[5]    Hofmann-Wellenhof, B., Lichtenegger, H., and Collins, J., Global Positioning System, Theory and Practice, 5th Ed., Springer, Wien, 2001, ISBN 3-211-83534-2, 382 pp. 
[6]    Teunissen, P.J.G., Montenbruck, O. (Eds), Springer Handbook of Global Navigation Satellite Systems, Springer International Publishing, 2017, DOI: 10.1007/978-3-319-42928-1.
[7]    Ning, T. et al., The uncertainty of the atmospheric integrated water vapour estimated from GNSS observations, Atmos. Meas. Tech., 9, 79–92, 2016, www.atmos-meas-tech.net/9/79/2016/, doi:10.5194/amt-9-79-2016. 
[8]    Noll, C., The Crustal Dynamics Data Information System: A resource to support scientific analysis using space geodesy, Advances in Space Research, 45(12), 1421-1440, 2010, ISSN 0273-1177, DOI: 10.1016/j.asr.2010.01.018. 
[9]    Zumberge, J. F., Heflin, M. B., Jefferson, D. C., Watkins, M. M., Webb, F. H., Precise point positioning for the efficient and robust analysis of GPS data from large networks, J. Geophys. Res., 102 (B3), 5005-5017, doi:10.1029/96JB03860, 1997. 
[10]    Sansó, F., Satellite Geodesy, 2nd Edition G. Seeber, de Gruyter, Geophysical Journal International, 157:1, 589 pp, 2003, ISBN 3-11-017549-5, https://doi.org/10.1111/j.1365-246X.2004.02236.x
[11]    Essen, L., Froome, K. D., The Refractive Indices and Dielectric Constants of Air and its Principal Constituents at 24,000 Mc/s, Proceedings of the Physical Society, Section B, 64:10, pp. 862-875, 1951, DOI: 10.1088/0370-1301/64/10/303.
[12]    Jean M. Rüeger, Refractive Index Formulae for Radio Waves, In Proceedings of FIG XXII International Congress Washington, D.C. USA, April 19-26, 2002, pp. 1–13.
[13]    P. Poli, et al., Meteorological Applications of GPS Signals with Ground and Space-Based Receivers, Inside GNSS, 2008, pp. 30–39. 
[14]    Bevis, M., S. Businger, S. Chiswell, T. A. Herring, R. A. Anthes, C. Rocken, and R. H. Ware, GNSS Meteorology: Mapping Zenith Wet Delays onto Precipitable Water. J. Appl. Meteor., 33, 379–386, 1994, https://doi.org/10.1175/1520-0450(1994)033<0379:GMMZWD>2.0.CO;2
[15]    Davis, J. L., Herring, T. A., Shapiro, I. I., Rogers, A. E. E., and Elgered, G.: Geodesy by radio interferometry: Effects of atmospheric modelling errors on estimates of baseline length, RadioSci., 20, 1593–1607, doi:10.1029/RS020i006p01593, 1985. 
[16]    Saastamoinen, J., Atmospheric correction for the troposphere and stratosphere in radio ranging of satellites, in The Use of Artifical Satellites for Geodesy, Geophys. Monogr. Ser, vol. 15, edited by S. W. Henriksen et al., pp. 247–251, AGU, Washington, D. C., 1972. 
[17]    Herring, T. A., King, R. W., McClusky, S. C., GAMIT Reference Guide, Rel. 10.3, Department of Earth, Atmospheric, and Planetary Sciences, Massachusetts Institute of Technology, 2006. 
[18]    Marini, J. W., Correction of satellite tracking data for an arbitrary tropospheric profile, Radio Sci 7:223–231, 1972, doi:10.1029/RS007i002p00223. 
[19]    Boehm J., Niell, A., Tregoning, P., Schuh, H., The Global Mapping Function (GMF): A new empirical mapping function based on data from numerical weather model data. J. Geophys. Res., 33, L07304, 2006b, DOI:10.129/2005GL025546. 
[20]    Boehm, J., Werl, B., and Schuh, H., Troposphere mapping functions for GPS and very long baseline interferometry from European Centre for Medium-Range Weather Forecasts operational analysis data, J. Geophys. Res., 111, B02406, 2006a, doi:10.1029/2005JB003629.
[21]    Niell, A., Global mapping functions for the atmosphere delay at radio wavelengths, J. Geophys. Res., 101, 3227–3246, 1996.
[22]    Niell, A., Improved atmospheric mapping functions for VLBI and GPS, Earth Planets Space, 52, 699–702, doi:10.1029/95JB03048, 2000. 
[23]    Elgered, G., Davis, J.L., Herring, T.A., & Shapiro, I.I., Geodesy by radio interferometry: Water vapor radiometry for estimation of the wet delay,  J. Geophys. Res., 96, 6541-6555, 1991, https://doi.org/10.1029/90JB00834
[24]    Parkinson, B.W., Spilker, J.J., Global Positioning System, Theory and Applications, Vol.1, Progress in Astronautics and Aeronautics, American Institute of Aeronautics and Astronautics, Washington, DC, 1996. 
[25]    Dach, R., Hugentobler, U., Fridez, P., Meindl, M. (Editors), User manual of the Bernese GPS Software Version 5.0, AIUB, 2007.
[26]    Dach, R., Lutz, S., Walser, P., Fridez, P. (Editors), User manual of the Bernese GPS SoftwareVersion 5.2, AIUB, 2015. 
[27]    Jones, J. et al. (eds.), Advanced GNSS Tropospheric Products for Monitoring Severe Weather Events and Climate, Springer 2020, https://doi.org/10.1007/978-3-030-13901-8
[28]    Kouba, J., A Guide to Using International GNSS Service (IGS) Products, 20092015, https://kbfiles.igs.org/hcpub/en-usresource/articles/201271873-A-Guide-to-Using-the-IGS-Productspubs/UsingIGSProductsVer21_cor.pdf (last checked 6. 27 April 20212023). 
[29]    Bradke, Markus, SEMISYS - Sensor Meta Information System. GFZ Data Services, 2020, https://doi.org/10.5880/GFZ.1.1.2020.005
[30]    Smith, E. K. and S. Weintraub, The constants in the equation for atmospheric refractive index at radio frequencies, Proceedings of the IRE, 41(8), 1035–1037, doi:10.1109/JRPROC.1953. 274297, 1953, https://doi.org/10.1109/JRPROC.1953.274297.
[31]    Boudouris, G., On the index of refraction of air, the absorption and dispersion of centimeter waves by gasses, Journal of research of the National Bureau of Standards, Sect. A, Physics and chemistry, 67D, 631–684, 1963. 
[32]    Alduchov, O. A., and R. E. Eskridge, Improved Magnus Form Approximation of Saturation Vapor Pressure, J. Appl. Meteor., 35, 601–609, 1996, https://doi.org/10.1175/1520-0450(1996)035<0601:IMFAOS>2.0.CO;2
[33]    Immler, F., J. Dykema, T. Gardiner, D. Whiteman, P. Thorne, and H. Vömel, Reference quality upper-air measurements: Guidance for developing GRUAN data products, Atmos. Meas. Tech., 3(5), 1217–1231, 2010, https://doi.org/10.5194/amt-3-1217-2010

Info
iconfalse

This document has been produced in the context of the Copernicus Climate Change Service (C3S).

The activities leading to these results have been contracted by the European Centre for Medium-Range Weather Forecasts, operator of C3S on behalf of the European Union (Delegation agreement Agreement signed on 11/11/2014 and Contribution Agreement signed on 22/07/2021). All information in this document is provided "as is" and no guarantee or warranty is given that the information is fit for any particular purpose.

The users thereof use the information at their sole risk and liability. For the avoidance of all doubt , the European Commission and the European Centre for Medium - Range Weather Forecasts have no liability in respect of this document, which is merely representing the author's view.

...