Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

This page evaluates the RRTMGP gas optics scheme (v1801204), designed for weather and climate applications. The comparisons below use the 50 profiles of the "Evaluation-1" CKDMIP dataset. The reference calculations were performed using LBLRTM to generate the high resolution absorption spectra and the CKDMIP software to perform the radiative transfer. See also the results for the later version 1.5 of RRTMGP (including full and reduced spectral resolution), as well as earlier RRTMG gas optics scheme, and also those from a Neural Network approximation to RRTMGP.

...

The following plot evaluates the representation of the overlap of the longwave absorption by carbon dioxide, methane and nitrous oxide. In each case, the x-axis shows the top-of-atmosphere radiative forcing from perturbing a gas to either its climatic minimum or maximum value, using the ranges stated by Hogan and Matricardi (2020). These radiative forcings are computed keeping the concentrations of all other well-mixed gases at their present-day values, except for the gas on the y-axis which is perturbed to its own climatic minimum or maximum values. The performance is improved somewhat from RRTMG.

Shortwave

The shortwave RRTMGP gas optics scheme uses a total of 224 g-points (k terms) in 14 bands. The following plots evaluate fluxes and heating rates for the four CKDMIP greenhouse-gas scenarios "Present", "Preindustrial", "Glacial Maximum" and "Future". Five solar zenith angles have been used with a fixed surface albedo of 0.15, the approximate global-mean value. The red line in the central column of panels quantifies the bias averaging over all five solar zenith angles, so should be considered as a daytime average (divide by two to get an approximate diurnal average). The shaded regions in these panels encompass 95% of the data. The solar spectrum in RRTMGP is based on recent measurements of the sun, consistent with those used in the reference calculations used in CKDMIP, so no correction needs to be performed as in the analysis of the earlier RRTMG model. The upwelling fluxes are much more accurate in terms of both bias and RMSE than the RRTMG results (after correcting the a posteriori correction of the RRTMG solar spectrum).


Image AddedImage AddedImage AddedImage Added

The following figure evaluates fluxes and irradiances in each of the 13 CKDMIP shortwave bands, indicating good performance in all bands; note that discrepancy in the first two bands is largely due to the fact that RRTMGP uses 2680 cm-1 as the boundary between these two bands, not 2600 cm-1 used in the CKDMIP reference calculations.

Image Added

The following plot compares the instantaneous radiative forcing (change to net flux) at top-of-atmosphere and the surface, from perturbing the concentrations of individual well-mixed greenhouse gases from their present-day values. It has been found by averaging over the 50 profiles of the Evaluation-1 dataset, and averaging over the five solar zenith angles; therefore these forcings correspond to daytime only. The CFCs have a tiny shortwave effect so have been excluded. For the minimum and maximum concentrations, the change to mean atmospheric heating rate is also evaluated. We see that the radiative forcing from changes to carbon dioxide and methane is excellent, fixing the underestimates found in RRTMG. The nitrous oxide forcing is underestimated, but is still better than in RRTMG which ignores this gas in the shortwave.

Image AddedComing soon!