Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

This page evaluates the ecRad implementation of the RRTMG gas optics scheme operational in the ECMWF model. It is indistinguishable from version 3.9 of RRTMG available from AER. It RRTMG is designed for weather and climate applications. The comparisons below use the 50 profiles of the "Evaluation-1" CKDMIP dataset. The reference calculations were performed using LBLRTM to generate the high resolution absorption spectra and the CKDMIP software to perform the radiative transfer. This page should be compared to the RRTMGP comparison, where RRTMGP is an updated version of RRTMG.

Longwave

The longwave gas optics scheme uses a total of 140 g-points (k terms) in 16 bands. The evaluation has been performed using radiative transfer with four zenith angles in each hemisphere (8 streams).  The following plots evaluate fluxes and heating rates for the four CKDMIP greenhouse-gas scenarios "Present", "Preindustrial", "Glacial Maximum" and "Future" (click on individual plots to expand). The shaded regions in the central three panels of each plot encompass 95% of the data. Generally the downwelling fluxes are unbiased, the upwelling TOA fluxes are underestimated by around 0.4 W m-2, and there are some systematic "wiggles" in the heating-rate profile errors.

The following plot evaluates fluxes and heating rates for the broadband (left leftmost column of panels) and the 13 CKDMIP longwave bands (other panels). This provides more information about the source of the broadband errors. The black dashed and red solid lines correspond to the average of the 50 profiles for the "present-day" scenario, while the shaded regions encompass 95% of the error.

...

The following plot compares the instantaneous radiative forcing (change to net flux) at top-of-atmosphere and the surface, from perturbing the concentrations of individual well-mixed greenhouse gases from their present-day values, found by averaging over the 50 profiles of the Evaluation-1 dataset.  For the minimum and maximum concentrations, the change to mean atmospheric heating rate is also evaluated. In this case we see that RRTMG represents the radiative forcing of all gases very well except for low values of methane, the radiative effect of which is underestimated.

...

The following plot evaluates the representation of the overlap of the longwave absorption by carbon dioxide, methane and nitrous oxide. In each case, the abscissa x-axis shows the top-of-atmosphere radiative forcing from perturbing a gas to either its climatic minimum or maximum value, using the ranges stated by Hogan and Matricardi (2020). These radiative forcings are computed keeping the concentrations of all other well-mixed gases at their present-day values, except for the gas on the ordinate y-axis which is perturbed to its own climatic minimum or maximum values. RRTMG correctly represents the fact that carbon dioxide radiative forcing is very weakly affected by the concentrations of the other two gases. However, it over-predicts the sensitivity of methane and nitrous oxide radiative forcing to the concentrations of the other gases.

...