Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

For data in NetCDF format (i.e. converted from the native GRIB format to NetCDF), the earth model is inherited from the GRIB data.

Production experiments

In order to speed up production, the historic ERA5 data was produced by running several parallel experiments which were then spliced together to form the final product.

A discontinuity can occur at the transition between the different experiments. Please see the Known issues for an example. The degree of discontinuity depends on how well the experiments were "spun-up". How well "spun-up" an experiment is, depends on the initial, chosen, state of the atmosphere and land surface at the beginning of the experiment, how long the experiment is run for, before being used for production, and the parameter(s) of interest - some parameters, such as those for the deeper soil and for the higher atmospheric levels, take longer to spin-up than others.

The information below gives the date ranges for the various production experiments (and hence the transition points) for the final version of ERA5 and also indicates when the computing system changed from the Cray to the ATOS.

Expand
titleAnalysis date ranges for the HRES production experiments



Start date (YYYYMMDD)Start time (UTC)End date (YYYYMMDD)End time (UTC)Computing system

19590101

00

19631231

21Cray

19631231

22

19681231

21Cray

19681231

22

19731231

21Cray

19731231

22

19781231

23Cray

19790101

00

19810630

23Cray

19810701

00

19860331

23Cray

19860401

00

19880930

23Cray

19881001

00

19930731

23Cray

19930801

00

19950831

23Cray

19950901

00

19991231

23Cray

20000101

00

20000930

23Cray

20001001

00

20010930

23Cray

20011001

00

20020930

23Cray

20021001

00

20030930

23Cray

20031001

00

20040930

23Cray

20041001

00

20050930

23Cray

20051001

00

20060930

23Cray

20061001

00

20071231

23Cray

20080101

00

20091231

23Cray

20100101

00

20141231

23Cray

20150101

00

20190228

23Cray

20190301

00

20210831

23Cray

20210901

00

20211231

23Cray

20220101

00

20221023

21Cray
2022102322ongoingongoingATOS



Expand
titleAnalysis date ranges for the EDA production experiments


Start date (YYYYMMDD)Start time (UTC)End date (YYYYMMDD)End time (UTC)Computing system

19590101

00

19631231

21Cray

19640101

00

19681231

21Cray

19690101

00

19731231

21Cray

19740101

00

19781231

21Cray

19790101

00

19860331

21Cray

19860401

00

19930731

21Cray

19930801

00

19991231

21Cray

20000101

00

20091231

21Cray

20100101

00

20141231

21Cray

20150101

00

20190228

21Cray

20190301

00

20210831

21Cray

20210901

00

20211231

21Cray

20220101

00

20221023

21Cray
2022102400ongoingongoingATOS


Note, that forecasts start from the relevant analysis at the forecast start date/time, so the provenance of the whole of each forecast is the same as that of the analysis at the forecast start date/time.

Accuracy and uncertainty

ERA5 is produced using 4D-Var data assimilation and model forecasts in CY41R2 of the IFS. The 4D-Var in ERA5 utilises 12 hour assimilation windows from 9-21 UTC and 21-9 UTC, where the background forecast and all the observations falling within a time window are used to specify all the analyses during that window. However, the accuracy of the analyses is not uniform throughout each window. If the model and observations are unbiased and their errors follow Gaussian distributions and if the observations are homogeneous in space and time, then the analysis error will be smallest in the middle of the assimilation window. However, because none of these assumptions are actually true in the IFS, the particular parameter and location of interest are important, too. Knowing that, a careful study should show at which points during the assimilation windows the analysis is most accurate.

...