page under construction ------------------------------
There are many situations where a user is only interested in a subset of the dataset spatial domain.
For example, when comparing modelled river flow against observations, it is reasonable to being able to extract the timeseries at those point coordinates rather than dealing with many GB of data.
Similarly, when the focus is on a specific catchment it is likely that you want only that part of the spatial domain.
In summary, there two operations that are very popular on CEMS-Flood datasets:
There are different ways to perform those operations:
Example script to crop and extract time series from different GloFAS products:
## === retrieve GloFAS Medium-Range Reforecast === ## === subset India, Pakistan, Nepal and Bangladesh region === import cdsapi from datetime import datetime, timedelta def get_monthsdays(): start, end = datetime(2019, 1, 1), datetime(2019, 12, 31) days = [start + timedelta(days=i) for i in range((end - start).days + 1)] monthday = [d.strftime("%B-%d").split("-") for d in days if d.weekday() in [0,3] ] return monthday MONTHSDAYS = get_monthsdays() if __name__ == '__main__': c = cdsapi.Client() # user inputs BBOX = [40.05 ,59.95, 4.95, 95.05] # North West South East YEARS = ['%d'%(y) for y in range(1999,2019)] LEADTIMES = ['%d'%(l) for l in range(24,1128,24)] # submit request for md in MONTHSDAYS: month = md[0].lower() day = md[1] c.retrieve( 'cems-glofas-reforecast', { 'system_version': 'version_2_2', 'variable': 'river_discharge_in_the_last_24_hours', 'format': 'grib', 'hydrological_model': 'htessel_lisflood', 'product_type': 'control_reforecast', 'area': BBOX,# < - subset 'hyear': YEARS, 'hmonth': month , 'hday': day , 'leadtime_hour': LEADTIMES, }, f'glofas_reforecast_{month}_{day}.grib') |
## === retrieve GloFAS Seasonal Forecast === ## === subset South America/Amazon region === import cdsapi if __name__ == '__main__': c = cdsapi.Client() YEARS = ['%d'%(y) for y in range(2020,2022)] MONTHS = ['%02d'%(m) for m in range(1,13)] LEADTIMES = ['%d'%(l) for l in range(24,2976,24)] for year in YEARS: for month in MONTHS: c.retrieve( 'cems-glofas-seasonal', { 'variable': 'river_discharge_in_the_last_24_hours', 'format': 'grib', 'year': year, 'month': '12' if year == '2020' else month, 'leadtime_hour': LEADTIMES, 'area': [ 10.95, -90.95, -30.95, -29.95 ] }, f'glofas_seasonal_{year}_{month}.grib') |
## === retrieve GloFAS Seasonal Reforecast === ## === subset South America/Amazon region === import cdsapi if __name__ == '__main__': c = cdsapi.Client() YEARS = ['%d'%(y) for y in range(1981,2021)] MONTHS = ['january', 'february', 'march', 'april', 'may', 'june', 'july', 'august', 'september', 'october', 'november', 'december'] LEADTIMES = ['%d'%(l) for l in range(24,2976,24)] for year in YEARS: for month in MONTHS: c.retrieve( 'cems-glofas-seasonal-reforecast', { 'system_version': 'version_2_2', 'variable':'river_discharge_in_the_last_24_hours', 'format':'grib', 'hydrological_model':'htessel_lisflood', 'hyear': year, 'hmonth': month, 'leadtime_hour': LEADTIMES, 'area': [ 10.95, -90.95, -30.95, -29.95 ] }, f'glofas_seasonal_reforecast_{year}_{month}.grib') |
This script shows how to retrieve a point time series reforecast on the river Thames for a single forecast reference time, specifically the 11th of July 2007.
| In July 2007 a series of flooding events hit the UK, in particular in some areas of the upper Thames catchment up to 120 mm of rain fell between 19th and 20th of July. Plot retrieved data:
|
---|