Evaluation of grid point data

For forecast ENS temperature data, all locations within each grid box surrounding a grid point are considered to have the same values as that forecast at the central grid point.  The fluxes of heat, moisture and momentum which in turn determine the surface values of temperature, dewpoint and wind at the grid point are calculated using the proportion of land within the surrounding area (where HTESSEL will be used) and lake/coastal seas (where FLake will be used).  For a sea grid point well offshore NEMO is be used to determine the surface fluxes of heat, moisture and momentum.

Energy flux information at each grid point is governed by the "fraction of land coverassigned to the area surrounding it (see Fig8.1.5.6A).   Thus grid points in rectangles that are coloured:

Users should note, for flux information: 



Fig8.1.5.6: An example over southern England of "fraction of land cover" values showing the proportion of land and water within each 9km x 9km square centred on each grid point.  At grid point X the fluxes of heat, moisture and momentum  will be determined by 70%-80% by HTESSEL and 20%30% by FLake.  At grid point Y the fluxes of heat, moisture and momentum will be determined by 100% by FLake, even though the grid point lies over land. 

Selection of ENS grid point relevant for a chosen location:

For land locations:

For sea locations:

The process of selecting which gridpoints ENS that are used on meteograms is illustrated below, using relatively complex but informative examples.


Example of grid point data on meteograms

Fig8.1.5.8: 10-day medium-range meteogram for Oslo from HRES/Ensemble Control (blue line) and ENS members (box and whiskers) data time 00UTC 26 June 2023.   The nearest land grid point to Oslo is at 59.93N 10.83E which lies some 5km away from and some 141m higher than Oslo city centre.  This grid point may well be representative of Haugerud on the fringes of Oslo, but temperatures are reduced to near sea level using 6.5K/km lapse rate.

Example1: A medium sized island.

The Isle of Wight in southern England.   The island is approximately 40km long by 25km wide.  Coastal areas are strongly influenced by the sea while central parts are not.


Fig8.1.5.7: ENS grid points over part of southern England.  Rectangles surrounding each grid point are coloured according to the "fraction of land cover" assigned to each grid point and shown by the scale on the right.  Within each rectangle all locations are considered to have the same values.  The fluxes of heat, moisture and momentum which in turn determine the surface values of temperature, dewpoint and wind at the grid point are calculated using the proportion of land (where HTESSEL will be used) and lake/coastal seas (where FLake will be used for lakes or shallow coastal water), or NEMO alone for grid points over open sea. Towns mentioned below are Ventnor (V), Bembridge (B), Freshwater (F) and the city of Portsmouth (P) and locations are marked by a cross.

Execution of the technique 

Example sites are shown on the diagram:

Users should note:

In the above example, if winds were light and from the East (i.e. wind blowing from sea to land at Ventnor) the influence of the sea point S is helpful in the derivation of temperatures.  However, if the winds were from the north (i.e. wind blowing from land to sea at Ventnor) then the influence of the sea point S may not be relevant.


Example2: A lake surrounded by rugged orography.

Eastern Lake Geneva.  Vevey and Montreux are lakeside towns which are not far apart but have different grid points; one has an altitude near lake level, the other has an altitude associated with the nearby mountains.

Fig8.1.5.9: ENS grid points over Lake Geneva.  Rectangles surrounding each grid point are coloured according to the "fraction of land cover" assigned to each grid point and shown by the scale on the right.  Within each rectangle all locations are considered to have the same values.  The fluxes of heat, moisture and momentum which in turn determine the surface values of temperature, dewpoint and wind at the grid point are calculated using the proportion of land (where HTESSEL will be used) and lake (where FLake will be used). Towns mentioned below are Montreux (M) and Vevey (V); locations are marked by a cross.

Example sites are shown on the diagram:

The difference in geographical altitude reflects the hilly nature of land and towns near the lake.


Fig8.1.5.10: 10-day medium-range meteogram for Vevey (on the shores of Lake Geneva) from HRES/Ensemble Control (blue line) and ENS members (box and whiskers) data time 00UTC 26 June 2023.   The nearest land grid point to Vevey is at 46.50N 6.79E which lies some 5km away from and some 281m higher than Vevey city centre.  This grid point may well be representative of the mountains to the northeast of Vevey, but temperatures are reduced to Vevey level using 6.5K/km lapse rate.

Fig8.1.5.11: 10-day medium-range meteogram for Montreaux (on the shores of Lake Geneva) from HRES/Ensemble Control (blue line) and ENS members (box and whiskers) data time 00UTC 26 June 2023.   The nearest land grid point to Montreaux is at 46.43N 6.92E which is almost coincident with the city.  However, the model altitude is some 219m higher than Montreaux city centre.  Temperatures are reduced to Montreaux level using 6.5K/km lapse rate.

Because of the complexities of the orography around the location users should note: 




It is difficult to disentangle causes, but users need to be aware of possible reasons in each case.  Note that in the case of temperature inversions the forecast of 2m temperature needs to be used with great care; in such situations, depending on the inversion level, the standard lapse rate assumptions can be very inappropriate.


Example3: A small oceanic island.

Canary Islands

 Fig8.1.5.12: ENS grid points around the Canary Islands.  Rectangles surrounding each grid point are coloured according to the "fraction of land cover" assigned to each grid point and shown by the scale on the right.  Within each rectangle all locations are considered to have the same values.  The fluxes of heat, moisture and momentum which in turn determine the surface values of temperature, dewpoint and wind at the grid point are calculated using the proportion of land (where HTESSEL will be used) and coastal water (where FLake will be used), or NEMO alone for grid points over open sea.  Locations mentioned below are St Cruz de Tenerife and Mount Tiede; locations are marked by a cross.

Example sites are shown on the diagram:

There are wide variations in orography within the islands (the islands are quite mountainous) and the representativeness of a grid point can be uncertain.



 Fig8.1.5.13: 10-day medium-range meteogram for Santa Cruz de Tenerife from HRES/Ensemble Control (blue line) and ENS members (box and whiskers) data time 00UTC 26 June 2023.   The nearest land grid point to Santa Cruz is at 28.51N 16.28W which lies some 5km away from and some 173m higher than Santa Cruz.  This grid point may well be representative of the hills to the northeast of Santa Cruz, but temperatures are reduced to Santa Cruz level using 6.5K/km lapse rate.


Fig8.1.5.14: 10-day medium-range meteogram for Mount Tiede from HRES/Ensemble Control (blue line) and ENS members (box and whiskers) data time 00UTC 26 June 2023.   The nearest land grid point to Mount Tiede is at 28.30N 16.63W which is almost coincident with the mountain peak.   However, the model altitude is some 1408m lower than the height of the mountain.  Temperatures are corrected to mountain peak level using 6.5K/km lapse rate.

There are wide variations in orography within the islands (the islands are quite mountainous) and the representativeness of a grid point can be uncertain.



Considerations when viewing meteograms

The method of assessment and delivery of data for presentation on meteograms has been described in detail to give an understanding of the techniques involved.  

Users should use meteogram output with caution - the data should not be taken as definitive but should be assessed and possibly adjusted.   In particular users should:

ENS should be taken at face value without consideration of the ways the temperature values are derived and the effects of local influences.  It is for the user to assess critically the representativeness of the Meteogram displayed and to make adjustments in the light of local knowledge and experience.  Disentangling coastal effects from altitude effects can be difficult.