Since the implementation of EFAS version 5.4 (XXX 2025) and GloFAS v4.3 (YYY 2025), the same design of products are used for the sub-seasonal range both in EFAS and GloFAS. This means, the previous EFAS sub-seasonal products were replaced by the new ones, while for GloFAS the sub-seasonal products are completely new. 

The new sub-seasonal products have calendar weekly periods (i.e. always Monday-Sunday) as lead time. The forecast signal is derived from the relationship between the calendar weekly mean river discharge and the climatological distribution of the possible weekly mean values. The fixed calendar weeks, as forecast lead times, will allow the users to compare forecasts from different runs, as the verification period is fixed (as the calendar weeks). The generation of the sub-seasonal products rely on three major components, listed below:

Component-1. Real time forecasts

This part is the hydrological forecasts produced in real time. This will give the actual predicted conditions for the sub-seasonal products that will be compared to climatologies to derive the forecast anomalies. In the following we describe the characteristics of these forecast simulations. Where appropriate, the difference between EFAS and GloFAS is specified. If there is no EFAS/GloFAS mentioned, then the method is identical between the two forecast systems:

Component-2. Reforecasts

The sub-seasonal products rely on range-dependent climatologies, that change with the forecast lead time. The climatologies are produced from a large set of hydrological reforecasts. In the following we describe the characteristics of these reforecast simulations. Where appropriate, the difference between EFAS and GloFAS is specified. If there is no EFAS/GloFAS mentioned, then the method is identical between the two systems:

Component-3. Climatologies

The sub-seasonal products rely on range-dependent climatologies, that change with the forecast lead time, and which are produced from the hydrological reforecasts. The climatologies will give the reference point for the different anomaly categories applied in the sub-seasonal range. These reference points are some of the specific quantiles from the climate distribution, such as the 10th and 90th percentile values. In the following we describe the main characteristics of the climatologies. Where appropriate, the difference between EFAS and GloFAS is specified. If there is no EFAS/GloFAS mentioned, then the method is identical between the two systems:

Generation of the forecast anomaly and uncertainty signal

In a sub-seasonal forecast, especially at the the longer ranges, the day-to-day variability of the river flow, with prediction of the actual expected flood severities, can not be expected due to the very high uncertainties. What is possible, is to rather give an indication of the river discharge anomalies and confidence in those predicted anomalies. As the forecast range increases, the uncertainty will also generally increase and with it the sharpness of the forecast will gradually decrease and more and more often the forecast is just going to show the climatologically expected conditions.

The generation of the sub-seasonal forecast signal is reflective of this and was designed to deliver a simple to understand categorical information on the anomalies and uncertainties present in the forecast, relative to the underlying weekly-mean-discharge-based climatology. The methodology to compute the anomaly and uncertainty information for the weekly mean sub-seasonal ensemble forecast is described here: Placeholder Forecast anomaly and uncertainty computation methodology. This is page is generic and describes the procedure for any river pixel and either one of the sub-seasonal or seasonal systems.