
Introducing Zombies

Previous Up Next

A is a running job, where the embedded child command(init,complete,abort) fails authentication when communicating with the zombie ecflow_client ecflow_
server

How are zombies created ?
There are a wide variety of reasons why a is created.zombie
The most common causes are due to user action:

The tree is deleted, replaced or reloaded whilst jobs are runningnode
A is rerun, whilst in a or statetask submitted active
A job is forced to a new state, i.e. complete

Rarer causes might be:

ecf script errors, where we have multiple calls to init and complete schild command
The s in the is placed in the background. In this case, the order in which the contact the server may be child command ecf script child command
indeterminate.
Load leveller submitting a job twice
Server crash and recovered file is out of datecheck point
Machine crash

How can zombie’s be handled ?

The default behaviour for init, complete, abort and wait child commands, is to the job, and for event, label, meter to continue(fob). (With , the job block fob
no longer blocks, but the server will change the node tree) not

When blocking the continues attempting to contact the .child command ecflow_server

There are two environment variables that control how handles wait times when trying to connect to the server.ecflow_client

ECF_TIMEOUT This defines the maximum time client will wait for child command. Hence this includes zombies. Typically applicable when any
the server is down. It is specified in seconds. The default value is 24 hours. See ecflow_client.
ECF_ZOMBIE_TIMEOUT This is applied to zombies only. It is specified in seconds. The default value is 12 hours. This would apply for each
zombie init, abort, and complete in the script.

When any of the above timeout is exceeded, exits with a failure. Depending on your script, this can be caught by a trap,ecflow_client
which will typically call abort child command, this again can wait for 12/24 hours before exiting the process.
Hence it is worth considering if this is appropriate behaviour for your system.

The jobs can also be configured, so that if the server denies the communication, then
the can be set to fail immediately.child command
(This can be done setting the environment variable ECF_DENIED in your scripts. See)ecflow_client
This can be useful to detect network issues early.

ecflow_ui provides a tab that lists all the zombies and the actions that can be taken.

The actions include:

Terminate:

The is asked to .child command fail
Depending on your scripts, if trapping is enabled, this may cause the abort to be called.child command
Which again will be flagged as a .zombie
Fob:

Allow the job to continue. The completes and hence no longer blocks the job.child command

Great care should be taken when this action is chosen.
If we have two jobs running, they may cause data corruption.
Even when we have a single job, issues can arise.
i.e.. if the associated command was an event , then thechild command
event would not be set. If this was used in a expression,it would never evaluate.event trigger
Delete:

Remove the from the server. The job will continue blocking, hencezombie

The zombie's tab is shown, in the info panel when the server node(i.e. topmost) is selected.

https://confluence.ecmwf.int/display/ECFLOW/Object+Oriented+Suites
https://confluence.ecmwf.int/display/ECFLOW/Advanced+Topics
https://confluence.ecmwf.int/display/ECFLOW/Handling+zombies
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-zombie
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-ecflow-client
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-ecflow-server
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-ecflow-server
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-zombie
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-node
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-task
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-submitted
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-active
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-complete
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-ecf-script
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-child-command
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-child-command
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-ecf-script
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-child-command
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-check-point
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-child-command
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-ecflow-server
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-ecflow-client
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-child-command
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-ecflow-client
https://confluence.ecmwf.int/display/ECFLOW/ecFlowUI
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-child-command
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-child-command
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-zombie
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-child-command
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-child-command
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-event
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-event
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-trigger
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-zombie

1.
2.
3.
4.
5.

when the next contacts the , the will re-appear.child command ecflow_server zombie
If the job is killed manually, then this option can be used.
Rescue:

Adopt the zombie and update the node tree.
The unique password(ECF_PASS) on the zombie is copied over to the , so that the next will continue as normal.task child command
This should only be used when the user is sure there are no additional jobs.
Kill:

Applies the kill command (ECF_KILL_CMD) using the process id stored on the .zombie
If the script has correct signal trapping, this should end up calling abort.
Note: path zombies will need to be killed manually.

What to do

Create a by starting a , and setting it to immediately via zombie task complete ecflow_ui
Inspect the log file, it will show you how the zombie has arisen.
Inspect the zombie tab in (select the host node, then select the zombie's tab)ecflow_ui
Experiment with the different actions on the zombie
Since the default ECF_ZOMBIE_TIMEOUT is 12hr, change this to 1 minute, by editing your head.h.

export ECF_ZOMBIE_TIMEOUT=60 # specified in seconds

Previous Up Next

Of the four actions above, only Rescue will allow to change the state of the node tree.child command

https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-child-command
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-ecflow-server
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-zombie
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-task
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-child-command
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-zombie
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-zombie
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-task
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-complete
https://confluence.ecmwf.int/display/ECFLOW/ecFlowUI
https://confluence.ecmwf.int/display/ECFLOW/ecFlowUI
https://confluence.ecmwf.int/display/ECFLOW/Object+Oriented+Suites
https://confluence.ecmwf.int/display/ECFLOW/Advanced+Topics
https://confluence.ecmwf.int/display/ECFLOW/Handling+zombies
https://confluence.ecmwf.int/display/ECFLOW/Glossary#term-child-command

	Introducing Zombies

