
Installation Guide

Binary versions

Before you install from source code you might want to check that already compiled binary versions are available to you. Magics and third-party dependent 
software packages might be available as binary packages for you platform in form of RPMs or Debian packages for Linux. Ubuntu maintains a Magics 

. version in their system default repository

Installing Magics through conda and pip

If you want to use Magics only through Python you have now choices to install Magics with your favourite Python package manager. With the release of 
Magics 4.0.0 (Feb 2019), the Python interface is separated from the library. This allowed the packaging through   and  .pip conda

Using pip

When using pip it is required to have the Magics library installed on the system!

pip install Magics

Ref: https://pypi.org/project/Magics/

Using conda

  Conda will install the Magics library and all its dependencies for you. Please make sure to  activate you conda environment  before running your python 
 program.

conda install -c conda-forge Magics
conda activate
python my-magics-script.py

Building Magics from source yourself

Requirements

The following table lists the dependency Magics requires to be build from source. Please note, if you install this package from source you also might 
have to install the respective "-devel" packages of dependencies. 

Compilers

C++ http://gcc.gnu.org/ The compiler must support C++ 17. GCC supports it from version 7

Fortran http://gcc.gnu.org/fortran/ Only needed to run Fortran tests

Utilities

cmake https://cmake.org version > 3.12

Third party libraries

proj https://proj.org to handle projections

netcdf http://www.unidata.ucar.edu/software/netcdf/ for netcdf support needed

Please note: You also need to install the  and legacy C++ interface HDF5

cairo + pango https://www.cairographics.org
http://www.pango.org/

for png/pdf support needed

expat http://expat.sourceforge.net/ for XML parsing

ECMWF libraries

ecCodes ecCodes Enables GRIB and BUFR support 

odc odc on GitHub if ODB support needed

http://packages.ubuntu.com/source/vivid/magics++
http://packages.ubuntu.com/source/vivid/magics++
https://pypi.org/project/Magics/
http://gcc.gnu.org/
http://gcc.gnu.org/fortran/
https://cmake.org
https://proj.org
http://www.unidata.ucar.edu/software/netcdf/
https://www.unidata.ucar.edu/downloads/netcdf/index.jsp
https://www.hdfgroup.org/HDF5/
https://www.cairographics.org
http://www.pango.org/
http://expat.sourceforge.net/
https://confluence.ecmwf.int/display/ECC
https://github.com/ecmwf/odc


1.  

2.  

CMake installation instructions
The  build system is used to build ECMWF software. The build process comprises two stages:CMake

CMake runs some tests on the system and finds out if required software libraries and headers are available. It uses this information to create 
native build tools (e.g. Makefiles) for the current platform.
The actual build can take place, for example by typing ' '.make

Prerequisite
To install any ECMWF software package, CMake needs to be installed on your system. On most systems it will be already installed or this can be done 
through the standard package manager to install software. For further information to install CMake see

http://www.cmake.org/cmake/help/install.html

Directories
During a build with CMake there are three different directories involved: The  , the   and the  .source dir build dir install dir

Directory Use Example

Source Contains the software's source code. This is where a source tarball should be extracted to. /tmp/src/sw-package

Build Configuration and compiler outputs are generated here, including libraries and executables. /tmp/build/sw-package

Install Where the software will actually be used from. Installation to this directory is the final stage. /usr/local

Of these, the source and build directories can be anywhere on the system. The installation directory is usually left at its default, which is . /usr/local
Installing software here ensures that it is automatically available to users. It is possible to specify a different installation directory by adding -

 to the CMake command line.DCMAKE_INSTALL_PREFIX=/path/to/install/dir

Quick Build Example
Here is an example set of commands to set up and build a software package using default settings. More detail for a customised build is given below.

# unpack the source tarball into a temporary directory
mkdir -p /tmp/src
cd /tmp/src
tar xzvf software-version-Source.tar.gz

# configure and build in a separate directory
mkdir -p /tmp/build
cd /tmp/build
cmake /tmp/src/software-version-Source
make

On a machine with multiple cores, compilation will be faster by specifying the number of cores to be used simultaneously for the build, for example:

make -j8

If the  command fails, you can get more output by typing:make

make VERBOSE=1

The software distribution will include a small set of tests which can help ensure that the build was successful. To start the tests, type:

ctest

ECMWF software does  support in-source builds. Therefore the build directory  be (a subdirectory of) the source directory.not cannot

http://cmake.org
http://www.cmake.org/cmake/help/install.html


As before if you have multiple cores, you can run the tests in parallel by:

ctest -j8

If the tests are successful, you can install the software:

make install

General CMake options
Various options can be passed to the CMake command. The following table gives an overview of some of the general options that can be used. Options 
are passed to the  command by prefixing them with , for example .cmake -D -DCMAKE_INSTALL_PREFIX=/path/to/dir

CMake Option Description Default

CMAKE_INSTALL_PREFIX where to install the software /usr/local

CMAKE_BUILD_TYPE to select the type of compilation:

Debug
RelWithDebInfo
Release
Production

RelWithDebInfo
(release with debug info)

CMAKE_CXX_FLAGS  Additional flags to pass to the C++ compiler  

CMAKE_C_FLAGS Additional flags to pass to the C compiler  

CMAKE_Fortran_FLAGS Additional flags to pass to the Fortran compiler  

The C, C++ and Fortran compilers are chosen by CMake. This can be overwritten by setting the environment variables CC, CXX and F77, before the call 
to  , to set the preferred compiler.cmake  Further the variable   can be used to set compiler flags for optimisation or debugging. For CMAKE_CXX_FLAGS

example, using   sets options for better optimisation. CMAKE_CXX_FLAGS="-O2 -mtune=native"

Finding support libraries

If any support libraries are installed in non-default locations, CMake can be instructed where to find them by one of the following methods. First, the option 
CMAKE_PREFIX_PATH can be set to a colon-separated list of base directories where the libraries are installed, for example -DCMAKE_PREFIX_PATH=

. CMake will check these directories for any package it requires. This method is therefore useful if many support /path/where/my/sw/is/installed
libraries are installed into the same location.

Troubleshooting

Debugging configure failures

If CMake fails to configure your project, run with debug logging first:

cmake -DECBUILD_LOG_LEVEL=DEBUG [...] /path/to/source

This will output lots of diagnostic information (in blue) on discovery of dependencies and much more.

Magics specific CMake options

Some projects might not be set up to run tests in parallel. If you experience test failures, run the tests sequentially.



After changing into the build Magics directory, the user has to run CMake with his/her own options. The command gives feedback on what requirements 
are fulfilled and what software is still required. Table below gives an overview of the different options of configure. The default (without any options) will 
compile a share library only and install it in /usr/local/.

cmake options doc default

ECCODES_PATH where to find eccodes ( if non-standard installation  )

ENABLE_NETCDF enable netcdf support on

NETCDF_PATH where to find netcdf  ( if non-standard installation  )

ENABLE_ODB enable odb support off

ODB_API_PATH where to find odb ( if non-standard installation  )

ENABLE_FORTRAN enable fortran interface on

ENABLE_METVIEW enable metview support(and Qt support) off

ENABLE_CAIRO enable Cairo support on

PROJ4_PATH where to find proj4 ( if non-standard installation  )

To make sure that a feature is really enabled, you will have to specify with the option ex: . In that case CMake will fail if the -DENABLE_NETCDF=ON
NetCDF support cannot be enabled.

Testing your build

The Magics code contains a directory called  in which, in separate sub-directories, tests for the various interfaces of Magics are provided. Test test
programs in Fortran and C are compiled and run if is invoked from the root directory. (Note that the  MAGPLUS_HOME=$PWD make check MAGPLUS_H

needs to be set!) OME

The output of the tests should verified before the library is installed. This setup does not check if the user setup is correct, but the code in test can be used 
to do so. More examples of source code can be found on the  .Magics web gallery

https://confluence.ecmwf.int/display/MAGP/Gallery

	Installation Guide

