
1.

2.

CodesUI - Installation guide

Overview

CodesUI uses for its compilation and installation. This is part of the process of homogenising the installation procedures for all ECMWF packages.CMake

CMake installation instructions

The build system is used to build ECMWF software. The build process comprises two stages:CMake

CMake runs some tests on the system and finds out if required software libraries and headers are available. It uses this information to create
native build tools (e.g. Makefiles) for the current platform.
The actual build can take place, for example by typing ' '.make

Prerequisite

To install any ECMWF software package, CMake needs to be installed on your system. On most systems it will be already installed or this can be done
through the standard package manager to install software. For further information to install CMake see

http://www.cmake.org/cmake/help/install.html

Directories

During a build with CMake there are three different directories involved: The , the and the .source dir build dir install dir

Source Contains the software's source code. This is where a source tarball should be extracted to. /tmp/src/sw-package

Build Configuration and compiler outputs are generated here, including libraries and executables. /tmp/build/sw-package

Install Where the software will actually be used from. Installation to this directory is the final stage. /usr/local

Of these, the source and build directories can be anywhere on the system. The installation directory is usually left at its default, which is . /usr/local
Installing software here ensures that it is automatically available to users. It is possible to specify a different installation directory by adding -

 to the CMake command line.DCMAKE_INSTALL_PREFIX=/path/to/install/dir

ECMWF software does support in-source builds. Therefore the build directory be (a subdirectory of) the source directory.not cannot

Quick Build Example

Here is an example set of commands to set up and build a software package using default settings. More detail for a customised build is given below.

unpack the source tarball into a temporary directory
mkdir -p /tmp/src

 cd /tmp/src
 tar xzvf software-version-Source.tar.gz

configure and build in a separate directory

 mkdir -p /tmp/build
 cd /tmp/build

cmake /tmp/src/software-version-Source
make

On a machine with multiple cores, compilation will be faster by specifying the number of cores to be used simultaneously for the build, for example:

make -j8

If the command fails, you can get more output by typing:make

make VERBOSE=1

If the build is successful, you can install the software:

make install

http://cmake.org
http://www.cmake.org/cmake/help/install.html

General CMake options

Various options can be passed to the CMake command. The following table gives an overview of some of the general options that can be used. Options
are passed to the command by prefixing them with , for example .cmake -D -DCMAKE_INSTALL_PREFIX=/path/to/dir

CMAKE_INSTALL_PREFIX where to install the software /usr/local

CMAKE_BUILD_TYPE to select the type of compilation:

Debug
RelWithDebInfo
Release
Production

RelWithDebInfo
(release with debug info)

CMAKE_CXX_FLAGS Additional flags to pass to the C++ compiler

CMAKE_C_FLAGS Additional flags to pass to the C compiler

The C and C++ compilers are chosen by CMake. This can be overwritten by setting the environment variables CC and CXX, before the call to , to cmake
set the preferred compiler. Further the variable can be used to set compiler flags for optimisation or debugging. For example, using CMAKE_CXX_FLAGS CM

 sets options for better optimisation. AKE_CXX_FLAGS="-O2 -mtune=native"

Finding support libraries

If any support libraries are installed in non-default locations, CMake can be instructed where to find them by one of the following methods. First, the option
CMAKE_PREFIX_PATH can be set to a colon-separated list of base directories where the libraries are installed, for example -DCMAKE_PREFIX_PATH=

. CMake will check these directories for any package it requires. This method is therefore useful if many support /path/where/my/sw/is/installed
libraries are installed into the same location.

Debugging configure failures

If CMake fails to configure your project, run with debug logging first:

cmake -DECBUILD_LOG_LEVEL=DEBUG [...] /path/to/source

This will output lots of diagnostic information (in blue) on discovery of dependencies and much more.

Requirements to build CodesUI

The following table lists the dependencies CodesUI requires to be built from source. Please note, if you install these package from source you also might
have to install the respective "-devel" packages.

Compilers

C++ http://gcc.gnu.org/

Utilities

make http://www.gnu.org/software/make/

Third party packages (best installed through system package manager)

Qt http://www.qt.io/ minimum is required version 5.0.0 of Qt

bash https://www.gnu.org/software/bash/

ECMWF libraries

ecCodes ecCodes minimum is requiredversion 2.6.0. of ecCodes

CMake options used in CodesUI

CMake options are passed to the command by prefixing them with , for example .cmake -D -DENABLE_QT_DEBUG=ON

CMake option Description Default

http://gcc.gnu.org/
http://www.gnu.org/software/make/
http://www.qt.io/
https://www.gnu.org/software/bash/
https://confluence.ecmwf.int/display/ECC

ENABLE_QT_DEB
UG

outputs additional log messages from Qt-based modules OFF

Path options - only required when support libraries are not installed in default locations

CMake Option Description Notes

ECCODES_PATH path to where ecCodes has been installed

CMAKE_PREFIX_
PATH

might be required if the Qt5 libraries are not found by default. Then they ican be specified like this: -
DCMAKE_PREFIX_PATH=/path/to/qt5/

	CodesUI - Installation guide

