1. System

System name (version)JRA-3Q
Date of implementationNovember 2022


2. Configuration


Earth system components included in the analysis system

(e.g., ocean, sea-ice, land, etc.)

Atmosphere, land.

Horizontal resolution of the model, with indication of grid spacing in km

(for the different Earth system component included in the model)

TL479 (~40km) for the atmospheric and land models.

Number of levels in the different Earth system components

(for the different Earth system component included in the model)

100 levels for the atmospheric model.

7 levels for the land model.

Frequency of the outputs

Every 6 hours (hourly or daily for some types), monthly statistics.

Top of the atmospheric model

0.01 hPa.

Number of analysis cycle per day4
Earliest start date

September 1, 1947

Integration time step

720 seconds for outer model with TL479 resolution,

600 seconds for inner model with TL319 resolution.

Length and frequency of the longest forecastNot applicable
Dataset latency3 days

Additional comments:



3. Analysis system
Data assimilation method4D-Var
Length of the analysis window

6 hours

Number of ensemble members and their resolution

Not applicable

Additional comments:


4. Externally prescribed boundary conditions and their source


Sea surface temperature

Until May 1985: COBE-SST2 (Hirahara et al. 2014)

From June 1985 onward: MGDSST (Kurihara et al. 2006)

Sea-ice

Until May 1985: COBE-SST2 (Hirahara et al. 2014)

From June 1985 onward: MGDSST (Kurihara et al. 2006)

Snow

Snow depth analysis is performed daily.

Vegetation

GLC2000

Land use (and its evolution in time)

Not applicable

Aerosols

Five types of aerosols (sulfate, black carbon, organic carbon, sea salt, and mineral dust) are considered to account for the direct effects of aerosols (Yabu et al. 2017). The three-dimensional monthly mean climatology of aerosol mass concentration was derived from a calculation that makes use of the Model of Aerosol Species in the Global Atmosphere (MASINGAR; Tanaka et al. 2003).

Green House Gases

CO2:

-1983: CMIP6 Historical (Meinshausen et al. 2017)

1984-2016: WDCGG (World Meteorological Organization 2018)

2017-: CMIP6 SSP2-4.5 (O'Neill et al. 2016)


CH4:

-1983: CMIP6 Historical (Meinshausen et al. 2017)

1984-2016: WDCGG (World Meteorological Organization 2018)

2017-: CMIP6 SSP2-4.5 (O'Neill et al. 2016)


N2O:

-1983: CMIP6 Historical (Meinshausen et al. 2017)

1984-2016: WDCGG (World Meteorological Organization 2018)

2017-: CMIP6 SSP2-4.5 (O'Neill et al. 2016)


CFC-11, CFC-12, HCFC-22:

-1954: CMIP6 Historical (Meinshausen et al. 2017)

1955-: A1 scenario: 2014 (World Meteorological Organization 2014)

Solar forcing

Constant at 1365 W m-2

Additional comments:



5. Details of model
Dynamical core (e.g., semi-Lagrangian)

Semi-implicit, semi-Lagrangian

Grid structure

Quasi-regular Gaussian latitude/longitude grids

Hydrostatic or nonhydrostatic

Hydrostatic

Radiations parameterization

Long wave radiation:

Two-stream absorption approximation

Correlated k-distribution method


Short wave radiation:

Two-stream with delta-Eddington approximation


Cloud radiation:

Maximum-random overlap (short wave)
Boundary layer parameterization

Monin-Obukhov similarity theory

Convection parameterization

Prognostic Arakawa-Schubert (1974) scheme

Cloud parameterization

Smith (1990) scheme

Stratocumulus: Kawai and Inoue (2006)
Land surface parameterization

Improved SiB

Other relevant details:



6. Further information
Operational contact point

Numerical Prediction Division, Information Infrastructure Department, Japan Meteorological Agency

URL of the technical note/ reference paper

https://doi.org/10.2151/jmsj.2024-004

URL for list of products

https://jra.kishou.go.jp/JRA-3Q/document/JRA-3Q_LL125_format_en.pdf

https://jra.kishou.go.jp/JRA-3Q/document/JRA-3Q_TL479_format_en.pdf


7. Observational data used
URL with the list of observational data used in the reanalysis

https://doi.org/10.2151/jmsj.2024-004

Appendix B

DOI of data product if available


Other sources for data access, if available

JRA data are also available at a handling cost for commercial purposes from the Japan Meteorological Business Support Center, and free of charge for non-commercial purposes under the license of CC-BY-NC-SA 4.0 (Attribution-NonCommercial-ShareAlike) from cooperative organizations.


Japan Meteorological Business Support Center:


Cooperative organizations:

  1. DIAS: Data Integration & Analysis System
  1. NCAR: National Center for Atmospheric Research



References

Arakawa,  A., and  W. H.  Schubert, 1974: Interaction of a cumulus cloud ensemble with the large-scale environment, Part I. J. Atmos. Sci., 31, 674–701.

Hirahara,  S.,  M.  Ishii, and  Y.  Fukuda, 2014: Centennial-scale sea surface temperature analysis and its uncertainty. J. Climate, 27, 57–75.

Kawai,  H., and  T.  Inoue, 2006: A simple parameterization scheme for subtropical marine stratocumulus. SOLA, 2, 17–20.

Kurihara,  Y.,  T.  Sakurai, and  T.  Kuragano, 2006: Global daily sea surface temperature analysis using data from satellite microwave radiometer, satellite infrared radiometer and in-situ observations. Weather Bull., 73, s1–s18 (in Japanese).

Meinshausen,  M.,  E.  Vogel,  A.  Nauels,  K.  Lorbacher,  N.  Meinshausen,  D. M.  Etheridge,  P. J.  Fraser,  S. A.  Montzka,  P. J.  Rayner,  C. M.  Trudinger,  P. B.  Krummel,  U.  Beyerle,  J. G.  Canadell,  J. S.  Daniel,  I. G.  Enting,  R. M.  Law,  C. R.  Lunder,  S.  O’Doherty,  R. G.  Prinn,  S.  Reimann,  M.  Rubino,  G. J. M.  Velders,  M. K.  Vollmer,  R. H. J.  Wang, and  R.  Weiss, 2017: Historical greenhouse gas concentrations for climate modelling (CMIP6). Geosci. Model Dev., 10, 2057–2116.

O’Neill,  B. C.,  C.  Tebaldi,  D. P.  van Vuuren,  V.  Eyring,  P.  Friedlingstein,  G.  Hurtt,  R.  Knutti,  E.  Kriegler,  J.-F.  Lamarque,  J.  Lowe,  G. A.  Meehl,  R.  Moss,  K.  Riahi, and  B. M.  Sanderson, 2016: The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev., 9, 3461–3482.

Smith,  R. N. B., 1990: A scheme for predicting layer clouds and their water content in a general circulation model. Quart. J. Roy. Meteor. Soc., 116, 435–460.

Tanaka,  T. Y.,  K.  Orito,  T. T.  Sekiyama,  K.  Shibata, and  M.  Chiba, 2003: MASINGAR, a global tropospheric aerosol chemical transport model coupled with MRI/JMA98 GCM: Model description. Pap. Meteorol. Geophys., 53, 119–138.

World Meteorological Organization, 2014: Scientific assessment of ozone depletion, 2014. World Meteorological Organization, Global Ozone Research and Monitoring Project-Report, No. 55, Geneva, Switzerland, 416 pp.

World Meteorological Organization, 2018: World Data Centre for Greenhouse Gases (WDCGG) Data Summary. WDCGG, No. 42, 97 pp.

Yabu,  S.,  T. Y.  Tanaka, and  N.  Oshima, 2017: Development of a multi-species aerosol-radiation scheme in JMA’s global model. CAS/JSC WGNE Res. Activ. Atmos. Oceanic Modell., 47, 6.19–6.20.


  • No labels