1. System

System name (version)Modern Era Retrospective-analysis for Research and Applications version 2 (MERRA-2) (using Goddard Earth Observing System version 5.12.4)
Date of implementation12 October, 2015


2. Configuration


Earth system components included in the analysis system

(e.g., ocean, sea-ice, land, etc.)

Assimilated and Interactive Aerosols. Observation-based precipitation driving the land surface and aerosol wet deposition except in the high latitudes (Reichle et al. 2017a)

Horizontal resolution of the model, with indication of grid spacing in km

(for the different Earth system component included in the model)

The model is run on a cubed sphere grid. Data are provided at 0.625° longitude by 0.5° latitude  (576 by 361 grid points, approximately 50km by 50km)

Number of levels in the different Earth system components

(for the different Earth system component included in the model)

72 native model levels, also interpolated to 42 pressure levels
Frequency of the outputs2D variables at 1 hourly frequency, 3D variables at 3 hourly frequency, Analysis variables at 6-hourly frequency
Top of the atmospheric model0.01 hPa
Number of analysis cycle per day4
Earliest start date00Z 01 January 1980
Integration time step900 seconds
Length and frequency of the longest forecast6 hours, only for the analysis cycle
Dataset latencyData is usually available monthly by the 15th of the following month

Additional comments:

Documentation: https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/docs


3. Analysis system
Data assimilation method3D variational analysis (3D-Var), with the first-guess at the appropriate time of the observations (FGAT) and variational bias correction.
Length of the analysis window6 hours
Number of ensemble members and their resolutionN/A

Additional comments:

Uses Incremental Analysis Update (Bloom et al. 1996) and global mass constraint (Takacs et al. 2016)


4. Externally prescribed boundary conditions and their source


Sea surface temperatureSST and Sea Ice are prescribed from observations; (Bosilovich et al. 2015)
Sea-iceAs with SST above, but sea ice albedo is discussed by Cullather et al. (2014)
SnowObservation-based precipitation driving the land surface except in the high latitudes (Reichle et al. 2017a,b)
VegetationSeasonally-varying climatology of satellite leaf-area index; (Reichle et al. 2017b)
Land use (and its evolution in time)Time invariant satellite land cover; (Reichle et al. 2017b)
AerosolsEmissions (Section 2.2 of Randles et al. 2016); Aerosols are assimilated and interactive with the radiation
Green House GasesFollows RCP 4.5
Solar forcingNOAA Climate Data Record (CDR) of Solar Spectral Irradiance (SSI), NRLSSI Version 2.1 (Coddington et al. 2017). There is lag in the release of latest data, so the near -real time analysis uses an extrapolation of the solar cycle.

Additional comments:



5. Details of model
Dynamical core (e.g., semi-Lagrangian)

Finite Volume (Putman and Lin, 2007)

Grid structure

Cubed sphere (Putman and Lin, 2007)

Hydrostatic or nonhydrostaticHydrostatic (Putman and Lin, 2007)
Radiations parameterizationChou-Suarez  (Molod et al. 2015)
Boundary layer parameterizationMolod et al. (2015)
Convection parameterizationMolod et al. (2015)
Cloud parameterizationMolod et al. (2015)
Land surface parameterizationCatchment land surface model (Koster et al. 2000; Reichle et al. 2017b)

Other relevant details:



6. Further information
Operational contact pointMichael Bosilovich, Michael.Bosilovich@nasa.gov
URL of the technical note/ reference paper

https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/docs/
Gelaro et al. (2017) - https://doi.org/10.1175/JCLI-D-16-0758.1

URL for list of productsBosilovich et al (2016), MERRA-2 File Specification Document https://gmao.gsfc.nasa.gov/pubs/docs/Bosilovich785.pdf
DOI detailshttps://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/citing_MERRA-2/


7. Observational data used
URL with the list of observational data used in the reanalysisMcCarty et al. (2016), https://gmao.gsfc.nasa.gov/pubs/docs/McCarty885.pdf
DOI of data product if available


Other sources for data access, if available



References

Bloom, S., L. Takacs, A. DaSilva, and D. Ledvina, 1996: Data assimilation using incremental analysis updates. Mon. Wea. Rev., 124, 1256–1271. doi:10.1175/1520-0493(1996)124,1256:DAUIAU.2.0.CO;2.

Bosilovich, Michael G., Santha Akella, Lawrence Coy, Richard Cullather, Clara Draper, Ronald Gelaro, Robin Kovach, Qing Liu, Andrea Molod, Peter Norris, Krzysztof Wargan, Winston Chao, Rolf Reichle, Lawrence Takacs, Yury Vikhliaev, Steve Bloom, Allison Collow, Stacey Firth, Gordon Labow, Gary Partyka, Steven Pawson, Oreste Reale, Siegfried D. Schubert, and Max Suárez, 2015: MERRA-2: Initial Evaluation of the Climate. NASA/TM–2015–104606, Vol. 43, 139 pp. Link

Bosilovich, M. G., R. Lucchesi, and M. Suárez, 2016: MERRA-2: File Specification. GMAO Office Note No. 9 (Version 1.1), 73 pp. Link

Coddington O., J. L. Lean, D. Lindholm, P. Pilewskie, M. Snow, and NOAA CDR Program (2017): NOAA Climate Data Record (CDR) of Solar Spectral Irradiance (SSI), NRLSSI Version 2.1. NOAA National Centers for Environmental Information. https://doi.org/10.7289/V53776SW

Cullather, R.I., S.M.J. Nowicki, B. Zhao, and M. J. Suárez, 2014: Evaluation of the surface representation of the Greenland Ice Sheet in a general circulation model. J. Climate, 27, 4835–4856, doi: 10.1175/JCLI-D-13-00635.1.

Gelaro, R., and Coauthors, 2017: The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Climate, 30, 5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1

Koster, R. D., M. J. Suarez, A. Ducharne, M. Stieglitz, and P. Kumar, 2000: A catchment-based approach to modeling land surface processes in a general circulation model: 1. Model structure. J. Geophys. Res., 105, 24 809–24 822, doi:10.1029/2000JD900327.

McCarty, Will, Lawrence Coy, Ronald Gelaro, Albert Huang, Dagmar Merkova, Edmond B. Smith, Meta Seinkiewicz, and Krzysztof Wargan, 2016: MERRA-2 Input Observations: Summary and Assessment. NASA Technical Report Series on Global Modeling and Data Assimilation, NASA/TM-2016-104606, Vol. 46, 61 pp https://gmao.gsfc.nasa.gov/pubs/docs/McCarty885.pdf

Molod, A., Takacs, L., Suárez, M., and Bacmeister, J., 2015: Development of the GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2, Geosci. Model Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015.

Putman, W.M. and Lin, S.J., 2007. Finite-volume transport on various cubed-sphere grids. Journal of Computational Physics, 227(1), pp.55-78. 10.1016/j.jcp.2007.07.022

Randles, C. A., A. M. da Silva, V. Buchard, A. Darmenov, P. R. Colarco, V. Aquila, H. Bian, E. P. Nowottnick, X. Pan, A. Smirnov, H. Yu, and R. Govindaraju, 2016: The MERRA-2 Aerosol Assimilation. NASA Technical Report Series on Global Modeling and Data Assimilation, NASA/TM-2016-104606, Vol. 45, 143 pp. https://gmao.gsfc.nasa.gov/pubs/docs/Randles887.pdf

Reichle, R. H., Q. Liu, R. D. Koster, C. S. Draper, S. P. P. Mahanama, and G. S. Partyka, 2017a: Land surface precipitation in MERRA-2, Journal of Climate, 30, 1643-1664, doi:10.1175/JCLI-D-16-0570.1.

Reichle, R. H., C. S. Draper, Q. Liu, M. Girotto, S. P. P. Mahanama, R. D. Koster, and G. J. M. De Lannoy, 2017b: Assessment of MERRA-2 land surface hydrology estimates, Journal of Climate, 30, 2937-2960, doi:10.1175/JCLI-D-16-0720.1.

Takacs, L.L., Suárez, M.J. and Todling, R., 2016: Maintaining atmospheric mass and waterbalance in reanalyses. Q.J.R. Meteorol. Soc., 142: 1565- 1573.https://doi.org/10.1002/qj.2763


  • No labels