The following scores are to be calculated for all parameters against both analysis (except mean sea-level pressure) and observation:
Wind
Mandatory:
- rms vector wind error
- mean error of wind speed
Other parameters
Mandatory
- Mean error
- Root mean square (rms) error
- Correlation coefficient between forecast and analysis anomalies (not required for obs)
- S1 score (only for MSLP and only against analysis)
Additional recommended
- mean absolute error
- rms forecast and analysis anomalies (not required for observations)
- standard deviation of forecast and analysis fields (not required for observations)
Definition
The following definitions should be used
Mean error
where the sum of the weights
S_w = \sum_{i=1}^n w_i
Root mean square (rms) error
Correlation coefficient between forecast and analysis anomalies
rms vector wind error
rmse = \sqrt {\frac{1}{S_w} \sum_{i=1}^n w_i (\vec{V}_f - \vec{V}_v)_i^2 }Mean absolute error
MAE = \frac{1}{S_w} \sum_{i=1}^n w_i | x_f - x_v |_irms anomaly
rmsa = \sqrt {\frac{1}{S_w} \sum_{i=1}^n w_i (x - x_c)_i^2 }standard deviation of field
sd = \sqrt {\frac{1}{S_w} \sum_{i=1}^n w_i (x - M_x)_i^2 }where
M_x = \frac{1}{S_w} \sum_{i=1}^n w_i x_iS1 score
S1 = 100 \frac{\sum_{i=1}^n w_i (e_g)_i}{\sum_{i=1}^n w_i (G_L)_i}
Where:
x_f
= the forecast value of the parameter in question;
x_v
= the corresponding verifying value;
x_c
= the climatological value of the parameter; n = the number of grid points or observations in the verification area;
M_{f,c}
= the mean value over the verification area of the forecast anomalies from climate;
M_{v,c}
= the mean value over the verification area of the analysed anomalies from climate;
\vec{V}_f
= the forecast wind vector;
\vec{V}_v
= the corresponding verifying value;
The differentiation is approximated by differences computed on the verification grid:
e_g = \left ( \left | \frac{\partial}{\partial x}(x_f-x_v)\right | + \left | \frac{\partial}{\partial y}(x_f-x_v)\right | \right ) G_L = \max \left ( \left | \frac{\partial x_f}{\partial x}\right | , \left | \frac{\partial x_v}{\partial x}\right | \right) + \max \left ( \left | \frac{\partial x_f}{\partial y}\right | , \left | \frac{\partial x_v}{\partial y}\right | \right)The weights w i applied at each grid point or observation location are defined as
Verification against analyses: w_i = \cos \theta_i , cosine of latitude at the the grid point i
Verification against observations: w_i = 1/n , all observations have equal weight