Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Expand
titleClick here to expand...Global climate models included in the CDS


Model Name

Modelling Centre

Model Details 

ACCESS-CM2

CSIRO-ARCCSS (Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria 3195, Australia, Australian Research Council Centre of Excellence for Climate System Science)

The model used in climate research named Australian Community Climate and Earth System Simulator Climate Model Version 2

ACCESS-ESM1-5

CSIRO (Commonwealth Scientific and Industrial Research Organisation)Australian Community Climate and Earth System Simulator Earth System Model Version 1.5

AWI-CM-1-1-MR

AWI (Alfred Wegener Institute)

AWI-ESM-1-1-LR

AWI (Alfred Wegener Institute)

BCC-CSM2-MR

BCC (Beijing Climate Center)

BCC-ESM1

BCC  (Beijing Climate Center)

CAMS-CSM1-0

CAMS (Chinese Academy of Meteorological Sciences)

CanESM5

CCCma (Canadian Centre for Climate Modelling and Analysis)

CanESM5-CanOE

CCCma (Canadian Centre for Climate Modelling and Analysis)

CAS-ESM2-0

CAS (Chinese Academy of Sciences)

CESM2

NCAR (National Center for Atmospheric Research)The Community Earth System Model version 2 (CESM2) is a state-of-the-art coupled model that includes ocean, wave, land, land-ice, sea-ice, and river runoff models as well as both low-top and high-top full chemistry versions of atmopsheric models. The model also includes biogeochemistry.

CESM2-FV2

NCAR (National Center for Atmospheric Research)

CESM2-WACCM

NCAR (National Center for Atmospheric Research)

CESM2-WACCM-FV2

NCAR (National Center for Atmospheric Research)

CIESM

THU (Tsinghua University - Department of Earth System Science)

CMCC-CM2-SR5

CMCC (Centro Euro-Mediterraneo per I Cambiamenti Climatici)

CNRM-CM6-1

CNRM-CERFACS (National Center for Meteorological Research, Météo-France and CNRS laboratory, Climate Modeling and Global change)ARPEGE-Climat Version 6.3 is the atmospheric component of the CNRM climate and Earth System models (CNRM-CM6-1 and CNRM-ESM2-1). It is based on the cycle 37 of the ARPEGE/IFS model (declared in 2010), developed under a collaboration between Météo-France and ECMWF. ARPEGE-Climat shares a large part of its physics and dynamics with its NWP counterpart ARPEGE used operationally at Météo-France. In comparison to ARPEGE-Climat Version 5.1 used for the CMIP5 exercise in CNRM-CM5.1, most of the atmospheric physics has been updated or revisited (Roehrig et al. 2019, Voldoire et al. 2019). For the surface, it is coupled to the SURFEX platform (Decharme et al. 2019).

CNRM-CM6-1-HR

CNRM-CERFACS (National Center for Meteorological Research, Météo-France and CNRS laboratory, Climate Modeling and Global change)

, released in 2019, includes the components:
aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N96; 192 x 144 longitude/latitude; 85 levels; top level 85 km), land: CABLE2.5, ocean: ACCESS-OM2 (GFDL-MOM5, tripolar primarily 1deg; 360 x 300 longitude/latitude; 50 levels; top grid cell 0-10 m), seaIce: CICE5.1.2 (same grid as ocean).
The model was run by the CSIRO (Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria 3195, Australia), ARCCSS (Australian Research Council Centre of Excellence for Climate System Science). Mailing address: CSIRO, c/o Simon J. Marsland, 107-121 Station Street, Aspendale, Victoria 3195, Australia (CSIRO-ARCCSS) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.

ACCESS-ESM1-5

CSIRO (Commonwealth Scientific and Industrial Research Organisation)The model used in climate research named Australian Community Climate and Earth System Simulator Earth System Model Version 1.5, released in 2019, includes the components:
aerosol: CLASSIC (v1.0), atmos: HadGAM2 (r1.1, N96; 192 x 145 longitude/latitude; 38 levels; top level 39255 m), land: CABLE2.4, ocean: ACCESS-OM2 (MOM5, tripolar primarily 1deg; 360 x 300 longitude/latitude; 50 levels; top grid cell 0-10 m), ocnBgchem: WOMBAT (same grid as ocean), seaIce: CICE4.1 (same grid as ocean).
The model was run by the Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria 3195, Australia (CSIRO) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

AWI-CM-1-1-MR

AWI (Alfred Wegener Institute)

AWI-CM 1.1 MR is the Alfred Wegener Institute Climate Model, it couples a medium-resolution "MR" Finite Element Sea Ice-Ocean Model (FESOM) to the ECHAM6 atmosphere model. The spatial resolution of the FESOM MR grid is locally increased up to 8 km in regions of high sea surface height (SSH) variability and reduced to 80 km over areas with low SSH variability.

AWI-ESM-1-1-LR

AWI (Alfred Wegener Institute)AWI-ESM 1.1 LR is an extension of the AWI-CM for earth system modelling.

BCC-CSM2-MR

BCC (Beijing Climate Center)The model used in climate research named BCC-CSM 2 MR, released in 2017, includes the components:
atmos: BCC_AGCM3_MR (T106; 320 x 160 longitude/latitude; 46 levels; top level 1.46 hPa), land: BCC_AVIM2, ocean: MOM4 (1/3 deg 10S-10N, 1/3-1 deg 10-30 N/S, and 1 deg in high latitudes; 360 x 232 longitude/latitude; 40 levels; top grid cell 0-10 m), seaIce: SIS2.
The model was run by the Beijing Climate Center, Beijing 100081, China (BCC) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 50 km, seaIce: 50 km.

BCC-ESM1

BCC  (Beijing Climate Center)The model used in climate research named BCC-ESM 1, released in 2017, includes the components:
atmos: BCC_AGCM3_LR (T42; 128 x 64 longitude/latitude; 26 levels; top level 2.19 hPa), atmosChem: BCC-AGCM3-Chem, land: BCC_AVIM2, ocean: MOM4 (1/3 deg 10S-10N, 1/3-1 deg 10-30 N/S, and 1 deg in high latitudes; 360 x 232 longitude/latitude; 40 levels; top grid cell 0-10 m), seaIce: SIS2.
The model was run by the Beijing Climate Center, Beijing 100081, China (BCC) in native nominal resolutions: atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 50 km, seaIce: 50 km.

CAMS-CSM1-0

CAMS (Chinese Academy of Meteorological Sciences)The model used in climate research named CAMS-CSM 1.0, released in 2016, includes the components:
atmos: ECHAM5_CAMS (T106; 320 x 160 longitude/latitude; 31 levels; top level 10 mb), land: CoLM 1.0, ocean: MOM4 (tripolar; 360 x 200 longitude/latitude, primarily 1deg latitude/longitude, down to 1/3deg within 30deg of the equatorial tropics; 50 levels; top grid cell 0-10 m), seaIce: SIS 1.0.
The model was run by the Chinese Academy of Meteorological Sciences, Beijing 100081, China (CAMS) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.

CanESM5

CCCma (Canadian Centre for Climate Modelling and Analysis)

CanESM5-CanOE

CCCma (Canadian Centre for Climate Modelling and Analysis)

CAS-ESM2-0

CAS (Chinese Academy of Sciences)The model used in climate research named CAS-ESM 2.0 (Chinese Academy of Sciences Earth System Model version 2.0), released in 2019, includes the components:
aerosol: IAP AACM, atmos: IAP AGCM 5.0 (Finite difference dynamical core; 256 x 128 longitude/latitude; 35 levels; top level 2.2 hPa), atmosChem: IAP AACM, land: CoLM, ocean: LICOM2.0 (LICOM2.0, primarily 1deg; 362 x 196 longitude/latitude; 30 levels; top grid cell 0-10 m), ocnBgchem: IAP OBGCM, seaIce: CICE4.
The model was run by the Chinese Academy of Sciences, Beijing 100029, China (CAS) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

CESM2

NCAR (National Center for Atmospheric Research)The Community Earth System Model version 2 (CESM2) is a state-of-the-art coupled model that includes ocean, wave, land, land-ice, sea-ice, and river runoff models as well as both low-top and high-top full chemistry versions of atmopsheric models. The model also includes biogeochemistry.

CESM2-FV2

NCAR (National Center for Atmospheric Research)The model used in climate research named CESM2-FV2, released in 2019, includes the components:
aerosol: MAM4 (same grid as atmos), atmos: CAM6 (1.9x2.5 finite volume grid; 144 x 96 longitude/latitude; 32 levels; top level 2.25 mb), atmosChem: MAM4 (same grid as atmos), land: CLM5 (same grid as atmos), landIce: CISM2.1, ocean: POP2 (320x384 longitude/latitude; 60 levels; top grid cell 0-10 m), ocnBgchem: MARBL (same grid as ocean), seaIce: CICE5.1 (same grid as ocean).
The model was run by the National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, 1850 Table Mesa Drive, Boulder, CO 80305, USA (NCAR) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, landIce: 5 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

CESM2-WACCM

NCAR (National Center for Atmospheric Research)The model used in climate research named CESM2-WACCM, released in 2018, includes the components:
aerosol: MAM4 (same grid as atmos), atmos: WACCM6 (0.9x1.25 finite volume grid; 288 x 192 longitude/latitude; 70 levels; top level 4.5e-06 mb), atmosChem: MAM4 (same grid as atmos), land: CLM5 (same grid as atmos), landIce: CISM2.1, ocean: POP2 (320 x 384 longitude/latitude; 60 levels; top grid cell 0-10 m), ocnBgchem: MARBL (same grid as ocean), seaIce: CICE5.1 (same grid as ocean).
The model was run by the National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, 1850 Table Mesa Drive, Boulder, CO 80305, USA (NCAR) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, landIce: 5 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

CESM2-WACCM-FV2

NCAR (National Center for Atmospheric Research)The model used in climate research named CESM2-WACCM-FV2, released in 2019, includes the components:
aerosol: MAM4 (same grid as atmos), atmos: WACCM6 (1.9x2.5 finite volume grid; 144 x 96 longitude/latitude; 70 levels; top level 4.5e-06 mb), atmosChem: MAM4 (same grid as atmos), land: CLM5 (same grid as atmos), landIce: CISM2.1, ocean: POP2 (320x384 longitude/latitude; 60 levels; top grid cell 0-10 m), ocnBgchem: MARBL (same grid as ocean), seaIce: CICE5.1 (same grid as ocean).
The model was run by the National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, 1850 Table Mesa Drive, Boulder, CO 80305, USA (NCAR) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, landIce: 5 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

CIESM

THU (Tsinghua University - Department of Earth System Science)The model used in climate research named Community Integrated Earth System Model, released in 2017, includes the components:
aerosol: MAM4, atmos: CIESM-AM (FV/FD; 288 x 192 longitude/latitude; 30 levels; top level 2.255 hPa), atmosChem: trop_mam4, land: CIESM-LM (modified CLM4.5), ocean: CIESM-OM (FD, SCCGrid Displaced Pole; 720 x 560 longitude/latitude; 46 levels; top grid cell 0-6 m), seaIce: CICE4.
The model was run by the Department of Earth System Science, Tsinghua University, Beijing 100084, China (THU) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, ocean: 50 km, seaIce: 50 km.

CMCC-CM2-SR5

CMCC (Centro Euro-Mediterraneo per I Cambiamenti Climatici)The model used in climate research named CMCC-CM2-SR5, released in 2016, includes the components:
aerosol: MAM3, atmos: CAM5.3 (1deg; 288 x 192 longitude/latitude; 30 levels; top at ~2 hPa), land: CLM4.5 (BGC mode), ocean: NEMO3.6 (ORCA1 tripolar primarly 1 deg lat/lon with meridional refinement down to 1/3 degree in the tropics; 362 x 292 longitude/latitude; 50 vertical levels; top grid cell 0-1 m), seaIce: CICE4.0.
The model was run by the Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Lecce 73100, Italy (CMCC) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.

CNRM-CM6-1

CNRM-CERFACS (National Center for Meteorological Research, Météo-France and CNRS laboratory, Climate Modeling and Global change)ARPEGE-Climat Version 6.3 is the atmospheric component of the CNRM climate and Earth System models (CNRM-CM6-1 and CNRM-ESM2-1). It is based on the cycle 37 of the ARPEGE/IFS model (declared in 2010), developed under a collaboration between Météo-France and ECMWF. ARPEGE-Climat shares a large part of its physics and dynamics with its NWP counterpart ARPEGE used operationally at Météo-France. In comparison to ARPEGE-Climat Version 5.1 used for the CMIP5 exercise in CNRM-CM5.1, most of the atmospheric physics has been updated or revisited (Roehrig et al. 2019, Voldoire et al. 2019). For the surface, it is coupled to the SURFEX platform (Decharme et al. 2019).

CNRM-CM6-1-HR

CNRM-CERFACS (National Center for Meteorological Research, Météo-France and CNRS laboratory, Climate Modeling and Global change)The model used in climate research named CNRM-CM6-1-HR, released in 2017, includes the components:
aerosol: prescribed monthly fields computed by TACTIC_v2 scheme, atmos: Arpege 6.3 (T359; Gaussian Reduced with 181724 grid points in total distributed over 360 latitude circles (with 720 grid points per latitude circle between 32.2degN and 32.2degS reducing to 18 grid points per latitude circle at 89.6degN and 89.6degS); 91 levels; top level 78.4 km), atmosChem: OZL_v2, land: Surfex 8.0c, ocean: Nemo 3.6 (eORCA025, tripolar primarily 1/4deg; 1442 x 1050 longitude/latitude; 75 levels; top grid cell 0-1 m), seaIce: Gelato 6.1.
The model was run by the CNRM (Centre National de Recherches Meteorologiques, Toulouse 31057, France), CERFACS (Centre Europeen de Recherche et de Formation Avancee en Calcul Scientifique, Toulouse 31057, France) (CNRM-CERFACS) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km.

CNRM-ESM2-1

CNRM-CERFACS (National Center for Meteorological Research, Météo-France and CNRS laboratory, Climate Modeling and Global change)TACTIC (Tropospheric Aerosols for ClimaTe In CNRM) is an interactive tropospheric aerosol scheme, able to represent the main anthropogenic and natural aerosol types in the troposphere. Originally developed in the GEMS/MACC project (Morcrette et al., 2009), this scheme has been adapted to the ARPEGE/ALADIN-Climat models (Michou et al., 2015 and Nabat et al., 2015). Aerosols are included through sectional bins, separating desert dust (3 size bins), sea-salt (3 size bins), sulphate (1 bin, as well as 1 additional variable for sulfate precursors considered as SO2), organic matter (2 bins: hydrophobic and hydrophilic particles) and black carbon (2 bins: hydrophobic and hydrophilic particles) particles. All these 12 species are prognostic variables in the model, submitted to transport (semi-lagrangian advection, and convective transport), dry deposition, in-cloud and below-cloud scavenging. The interaction with shortwave and longwave radiation, is also taken into account through optical properties (extinction coefficient, single scattering albedo and asymmetry parameter) calculated using the Mie theory. Sulfate, organic matter and sea salt concentrations are used to determine the cloud droplet number concentration following Menon et al. (2002), thus representing the cloud-albedo effect (1st indirect aerosol effect).

E3SM-1-0

E3SM-Project LLNL (Energy Exascale Earth System Model, Lawrence Livermore National Laboratory)

E3SM-1-1

E3SM-Project RUBISCO (Energy Exascale Earth System Model, Reducing Uncertainty in Biogeochemical Interactions through Synthesis and COmputation)E3SM 1.1 (Energy Exascale Earth System Model)

E3SM-1-1-ECA

E3SM-Project  (Energy Exascale Earth System Model)E3SM 1.1 (Energy Exascale Earth System Model) with an experimental land BGC ECA configuration

EC-Earth3

EC-Earth-ConsortiumThe atmosphere-ocean general circulation model is described by Doescher-et-al-2020. The atmosphere is a modified version of IFS cycle 36r4, and includes the land-surface scheme H-TESSEL. The ocean and sea-ice model is NEMO-LIM3 version 3.6 with a few modifications. The OASIS3-MCT coupler version 3.0 is used to exchange fields between the atmosphere and ocean components.

EC-Earth3-LR

EC-Earth-ConsortiumThe atmosphere-ocean general circulation model is described by Doescher-et-al-2020. The atmosphere is a modified version of IFS cycle 36r4, and includes the land-surface scheme H-TESSEL. The ocean and sea-ice model is NEMO-LIM3 version 3.6 with a few modifications. The OASIS3-MCT coupler version 3.0 is used to exchange fields between the atmosphere and ocean components.

EC-Earth3-Veg

EC-Earth-ConsortiumThe atmosphere-ocean general circulation model is described by Doescher-et-al-2020. The atmosphere is a modified version of IFS cycle 36r4, and includes the land-surface scheme H-TESSEL. The ocean and sea-ice model is NEMO-LIM3 version 3.6 with a few modifications. The OASIS3-MCT coupler version 3.0 is used to exchange fields between the atmosphere and ocean components.

EC-Earth3-Veg-LR

EC-Earth-ConsortiumThe atmosphere-ocean general circulation model is described by Doescher-et-al-2020. The atmosphere is a modified version of IFS cycle 36r4, and includes the land-surface scheme H-TESSEL. The ocean and sea-ice model is NEMO-LIM3 version 3.6 with a few modifications. The OASIS3-MCT coupler version 3.0 is used to exchange fields between the atmosphere and ocean components.

FGOALS-f3-L

CAS (Chinese Academy of Sciences)The model used in climate research named FGOALS-f3-L, released in 2017, includes the components:
atmos: FAMIL2.2 (Cubed-sphere, c96; 360 x 180 longitude/latitude; 32 levels; top level 2.16 hPa), land: CLM4.0, ocean: LICOM3.0 (LICOM3.0, tripolar primarily 1deg; 360 x 218 longitude/latitude; 30 levels; top grid cell 0-10 m), seaIce: CICE4.0.
The model was run by the Chinese Academy of Sciences, Beijing 100029, China (CAS) in native nominal resolutions: atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.

FGOALS-g3

CAS (Chinese Academy of Sciences)The model used in climate research named FGOALS-g3, released in 2017, includes the components:
atmos: GAMIL3 (180 x 80 longitude/latitude; 26 levels; top level 2.19hPa), land: CAS-LSM, ocean: LICOM3.0 (LICOM3.0, tripolar primarily 1deg; 360 x 218 longitude/latitude; 30 levels; top grid cell 0-10 m), seaIce: CICE4.0.
The model was run by the Chinese Academy of Sciences, Beijing 100029, China (CAS) in native nominal resolutions: atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.

FIO-ESM-2-0

FIO-QLNM (First Institute of Oceanography (FIO) and Qingdao National Laboratory for Marine Science and Technology (QNLM))The model used in climate research named FIO-ESM 2.0, released in 2018, includes the components:
aerosol: Prescribed monthly fields, atmos: CAM4 (0.9x1.25 finite volume grid; 192 x 288 longitude/latitude; 26 levels; top level ~2 hPa), land: CLM4.0 (same grid at atmos), ocean: POP2-W (POP2 coupled with MASNUM surface wave model, Displaced Pole; 320 x 384 longitude/latitude; 60 levels; top grid cell 0-10 m), seaIce: CICE4.0 (same grid as ocean).
The model was run by the FIO (First Institute of Oceanography, Ministry of Natural Resources, Qingdao 266061, China), QNLM (Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China) (FIO-QLNM) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.

GFDL-AM4

NOAA-GFDL (National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory)This is the Atmosphere and Land component (AM4.0.1) of GFDL coupled model CM4.0 for use in CMIP6. The Atmospheric component is identifical to the AM4.0 model documented in Zhao et. al (2018a, 2018b). The vegetation, land and glacier models differ from AM4.0 in the following aspects: 1) dynamical vegetation was used instead the static vegetation used in AM4.0. 2) glacier albedo is retuned. 3) other minor tuning in the land model.

GFDL-CM4

NOAA-GFDL (National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory)This is the GFDL physical coupled model CM4.0 for use in CMIP6. The model is documented in Held et al (2019)

GFDL-ESM4

NOAA-GFDL (National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory)The model used in climate research named GFDL-ESM4, released in 2018, includes the components:
aerosol: interactive, atmos: GFDL-AM4.1 (Cubed-sphere (c96) - 1 degree nominal horizontal resolution; 360 x 180 longitude/latitude; 49 levels; top level 1 Pa), atmosChem: GFDL-ATMCHEM4.1 (full atmospheric chemistry), land: GFDL-LM4.1, landIce: GFDL-LM4.1, ocean: GFDL-OM4p5 (GFDL-MOM6, tripolar - nominal 0.5 deg; 720 x 576 longitude/latitude; 75 levels; top grid cell 0-2 m), ocnBgchem: GFDL-COBALTv2, seaIce: GFDL-SIM4p5 (GFDL-SIS2.0, tripolar - nominal 0.5 deg; 720 x 576 longitude/latitude; 5 layers; 5 thickness categories).
The model was run by the National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory, Princeton, NJ 08540, USA (NOAA-GFDL) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, landIce: 100 km, ocean: 50 km, ocnBgchem: 50 km, seaIce: 50 km.

GISS-E2-1-G

NASA-GISS  (National Oceanic and Atmospheric Administration, Goddard Institute for Space Studies)The model used in climate research named GISS-E2.1G, released in 2019, includes the components:
aerosol: Varies with physics-version (p==1 none, p==3 OMA, p==4 TOMAS, p==5 MATRIX), atmos: GISS-E2.1 (2.5x2 degree; 144 x 90 longitude/latitude; 40 levels; top level 0.1 hPa), atmosChem: Varies with physics-version (p==1 Non-interactive, p>1 GPUCCINI), land: GISS LSM, ocean: GISS Ocean (GO1, 1 degree; 360 x 180 longitude/latitude; 40 levels; top grid cell 0-10 m), seaIce: GISS SI.
The model was run by the Goddard Institute for Space Studies, New York, NY 10025, USA (NASA-GISS) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 100 km, seaIce: 250 km.

GISS-E2-1-H

NASA-GISS  (National Oceanic and Atmospheric Administration, Goddard Institute for Space Studies)The model used in climate research named GISS-E2.1H, released in 2019, includes the components:
aerosol: Varies with physics-version (p==1 none, p==3 OMA, p==4 TOMAS, p==5 MATRIX), atmos: GISS-E2.1 (2.5x2 degree; 144 x 90 longitude/latitude; 40 levels; top level 0.1 hPa), atmosChem: Varies with physics-version (p==1 Non-interactive, p>1 GPUCCINI), land: GISS LSM, ocean: HYCOM Ocean (~1 degree tripolar grid; 360 x 180 longitude/latitude; 32 levels; top grid cell 0-10 m), seaIce: GISS SI.
The model was run by the Goddard Institute for Space Studies, New York, NY 10025, USA (NASA-GISS) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 100 km, seaIce: 250 km.

GISS-E2-2-G

NASA-GISS  (National Oceanic and Atmospheric Administration, Goddard Institute for Space Studies)The model used in climate research named GISS-E2-2-G, released in 2019, includes the components:
aerosol: varies with physics-version (p==1 none, p==3 OMA, p==4 TOMAS, p==5 MATRIX), atmos: GISS-E2.2 (High-top, 2 x 2.5 degrees; 144 x 90 longitude/latitude; 102 levels; top level 0.002 hPa), atmosChem: varies with physics-version (p==1 Non-interactive, p>1 GPUCCINI), land: GISS LSM, landIce: Fixed, ocean: GISS Ocean (GO1, 1 degree; 360 x 180 longitude/latitude; 40 levels; top grid cell 0-10m), seaIce: GISS SI.
The model was run by the Goddard Institute for Space Studies, New York, NY 10025, USA (NASA-GISS) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, landIce: 250 km, ocean: 100 km, seaIce: 100 km.

HadGEM3-GC31-LL

MOHC NERC (Met Office Hadley Centre, Natural Environmental Research Council)Aerosol2: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N96;192 x 144 longitude/latitude; 85 levels; top level 85km), atmosChem: none, land: JULES-HadGEM3-GL7.1, landIce: none, ocean: NEMO-HadGEM3-GO6.0 (ORCA1 tripolar primarily 1 deg latitude/longitude with meridional refinement down to 1/3 deg in tropics; 400 x 180 longitude/latitude; 75 levels; top grid cell 0-1m), ocnBgchem: none, seaIce: CICE-HadGEM3-GSI8 (ORCA1 tripolar primarily 1 deg; 360 x 180 longitude/latitude).

HadGEM3-GC31-MM

MOHC (Met Office Hadley Centre)The model used in climate research named HadGEM3-GC3.1-N216ORCA025, released in 2016, includes the components:
aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N216; 432 x 324 longitude/latitude; 85 levels; top level 85 km), land: JULES-HadGEM3-GL7.1, ocean: NEMO-HadGEM3-GO6.0 (eORCA025 tripolar primarily 0.25 deg; 1440 x 1205 longitude/latitude; 75 levels; top grid cell 0-1 m), seaIce: CICE-HadGEM3-GSI8 (eORCA025 tripolar primarily 0.25 deg; 1440 x 1205 longitude/latitude).
The model was run by the Met Office Hadley Centre, Fitzroy Road, Exeter, Devon, EX1 3PB, UK (MOHC) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km.

IITM-ESM

CCCR-IITM (Centre for Climate Change Research,  Indian Institute of Tropical Meteorology)The model used in climate research named IITM-ESM, released in 2015, includes the components:
aerosol: prescribed MAC-v2, atmos: IITM-GFSv1 (T62L64, Linearly Reduced Gaussian Grid; 192 x 94 longitude/latitude; 64 levels; top level 0.2 mb), land: NOAH LSMv2.7.1, ocean: MOM4p1 (tripolar, primarily 1deg; 360 x 200 longitude/latitude; 50 levels; top grid cell 0-10 m), ocnBgchem: TOPAZv2.0, seaIce: SISv1.0.
The model was run by the Centre for Climate Change Research, Indian Institute of Tropical Meteorology Pune, Maharashtra 411 008, India (CCCR-IITM) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

INM-CM4-8

INM (Institute of Numerical Mathematics)The model used in climate research named INM-CM4-8, released in 2016, includes the components:
aerosol: INM-AER1, atmos: INM-AM4-8 (2x1.5; 180 x 120 longitude/latitude; 21 levels; top level sigma = 0.01), land: INM-LND1, ocean: INM-OM5 (North Pole shifted to 60N, 90E; 360 x 318 longitude/latitude; 40 levels; sigma vertical coordinate), seaIce: INM-ICE1.
The model was run by the Institute for Numerical Mathematics, Russian Academy of Science, Moscow 119991, Russia (INM) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.

INM-CM5-0

INM (Institute of Numerical Mathematics)The model used in climate research named INM-CM5-0, released in 2016, includes the components:
aerosol: INM-AER1, atmos: INM-AM5-0 (2x1.5; 180 x 120 longitude/latitude; 73 levels; top level sigma = 0.0002), land: INM-LND1, ocean: INM-OM5 (North Pole shifted to 60N, 90E. 0.5x0.25; 720 x 720 longitude/latitude; 40 levels; vertical sigma coordinate), seaIce: INM-ICE1.
The model was run by the Institute for Numerical Mathematics, Russian Academy of Science, Moscow 119991, Russia (INM) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, ocean: 50 km, seaIce: 50 km.

IPSL-CM6A-LR

IPSL (Institut Pierre‐Simon Laplace)The model used in climate research named IPSL-CM6A-LR, released in 2017, includes the components:
atmos: LMDZ (NPv6, N96; 144 x 143 longitude/latitude; 79 levels; top level 80000 m), land: ORCHIDEE (v2.0, Water/Carbon/Energy mode), ocean: NEMO-OPA (eORCA1.3, tripolar primarily 1deg; 362 x 332 longitude/latitude; 75 levels; top grid cell 0-2 m), ocnBgchem: NEMO-PISCES, seaIce: NEMO-LIM3.
The model was run by the Institut Pierre Simon Laplace, Paris 75252, France (IPSL) in native nominal resolutions: atmos: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

KACE-1-0-G

NIMS-KMA (National Institute of Meteorological Sciences/Korea Met. Administration)The model used in climate research named KACE1.0-GLOMAP, released in 2018, includes the components:
aerosol: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N96; 192 x 144 longitude/latitude; 85 levels; top level 85 km), land: JULES-HadGEM3-GL7.1, ocean: MOM4p1 (tripolar primarily 1deg; 360 x 200 longitude/latitude; 50 levels; top grid cell 0-10 m), seaIce: CICE-HadGEM3-GSI8 (tripolar primarily 1deg; 360 x 200 longitude/latitude)..
The model was run by the National Institute of Meteorological Sciences/Korea Meteorological Administration, Climate Research Division, Seoho-bukro 33, Seogwipo-si, Jejudo 63568, Republic of Korea (NIMS-KMA) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.

KIOST-ESM

KIOST (Korea Institute of Ocean Science and Technology)The model used in climate research named KIOST Earth System Model v2, released in 2018, includes the components:
atmos: GFDL-AM2.0 (cubed sphere (C48); 192 x 96 longitude/latitude; 32 vertical levels; top level 2 hPa), atmosChem: Simple carbon aerosol model (emission type), land: NCAR-CLM4, landIce: NCAR-CLM4, ocean: GFDL-MOM5.0 (tripolar - nominal 1.0 deg; 360 x 200 longitude/latitude; 52 levels; top grid cell 0-2 m; NK mixed layer scheme), ocnBgchem: TOPAZ2, seaIce: GFDL-SIS.
The model was run by the Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea (KIOST) in native nominal resolutions: atmos: 250 km, atmosChem: 250 km, land: 250 km, landIce: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

MCM-UA-1-0

UA (University of Arizona - Department of Geosciences)R30 spectral atmosphere coupled to MOM1 ocean using simple Manabe land model and simple Bryan sea ice model.

MIROC6

MIROC (Atmosphere and Ocean Research Institute (AORI), Centre for Climate System Research - National Institute for Environmental Studies (CCSR-NIES) and Atmosphere and Ocean Research Institute (AORI))MIROC6 is a physical climate model mainly composed of three sub-models: atmosphere, land, and sea ice-ocean. The atmospheric model is based on the CCSR-NIES atmospheric general circulation model. The horizontal resolution is a T85 spectral truncation that is an approximately 1.4° grid interval for both latitude and longitude. The vertical grid coordinate is a hybrid σ-p coordinate. The model top is placed at 0.004 hPa, and there are 81 vertical levels. The Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS) is used as an aerosol module for MIROC6 to predict the mass mixing ratios of the main tropospheric aerosols. By coupling the radiation and cloud-precipitation schemes, SPRINTARS calculates not only the aerosol transport processes but also the aerosol-radiation and aerosol-cloud interactions.The land surface model is based on Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO), which includes a river routing model based on a kinematic wave flow equation and a lake module where one-dimensional thermal diffusion and mass conservation are considered. The horizontal resolution of the land surface model is the same as that of the atmopheric component. There are a three-layers snow and a six-layers soil down to a 14 m depth.The sea ice-ocean model is based on the CCSR Ocean Component model (COCO). The tripolar horizontal coordinate system is adopted, and the longitudinal grid spacing is 1° and the meridional grid spacing varies from about 0.5° near the equator to 1° in the mid-latitudes. There are 62 vertical levels in a hybrid σ-z coordinate system. A coupler system calculates heat and freshwater fluxes between the sub-models in order to ensure that all fluxes are conserved within machine precision and then exchanges the fluxes among the sub-models. No flux adjustments are used in MIROC6.

MIROC-ES2L

MIROC (Atmosphere and Ocean Research Institute (AORI), Centre for Climate System Research - National Institute for Environmental Studies (CCSR-NIES) and Atmosphere and Ocean Research Institute (AORI))MIROC-AGCM is the atmospheric component of a climate model, the Model for Interdisciplinary Research on Climate version 6 (MIROC6). The MIROC-AGCM employs a spectral dynamical core, and standard physical parameterizations for cumulus convections, radiative transfer, cloud microphysics, turbulence, and gravity wave drag. It also has an aerosol module. The model is cooperatively developed by the Japanese modeling community including the Atmosphere and Ocean Research Institute, the University of Tokyo, the Japan Agency for Marine-Earth Science and Technology, and the National Institute for Environmental Studies.

MPI-ESM-1-2-HAM

HAMMOZ-Consortium (Swiss Federal Institute of Technology Zurich (ETH-Zurich), Max Planck Institute for Meteorology (MPI-M), Forschungszentrum Jülich, University of Oxford, Finnish Meteorological Institute (FMI), Leibniz Institute for Tropospheric Research (IfT) and Center for Climate Systems Modeling (C2SM) at ETH Zurich)MPI-ESM1.2-HAM is the latest version of the Max Planck Institute for Meteorology Earth System Model (MPI-ESM1.2) coupled with the Hamburg Aerosol Module (HAM2.3), developed by the HAMMOZ consortium. The HAMMOZ consortium is composed of ETH Zurich, Max Planck Institut for Meteorology, Forschungszentrum Jülich, University of Oxford, the Finnish Meteorological Institute and the Leibniz Institute for Tropospheric Research, and managed by the Center for Climate Systems Modeling (C2SM) at ETH Zurich.

MPI-ESM1-2-HR

MPI-M DWD DKRZ (Max Planck Institute for Meteorology (MPI-M), German Meteorological Service (DWD), German Climate Computing Center (DKRZ))The model used in climate research named MPI-ESM1.2-HR, released in 2017, includes the components:
aerosol: none, prescribed MACv2-SP, atmos: ECHAM6.3 (spectral T127; 384 x 192 longitude/latitude; 95 levels; top level 0.01 hPa), land: JSBACH3.20, landIce: none/prescribed, ocean: MPIOM1.63 (tripolar TP04, approximately 0.4deg; 802 x 404 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model).
The model was run by the Max Planck Institute for Meteorology, Hamburg 20146, Germany (MPI-M) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, land: 100 km, landIce: none, ocean: 50 km, ocnBgchem: 50 km, seaIce: 50 km.

MPI-ESM1-2-LR

MPI-M AWI (Max Planck Institute for Meteorology (MPI-M), AWI (Alfred Wegener Institute))The model used in climate research named MPI-ESM1.2-LR, released in 2017, includes the components:
aerosol: none, prescribed MACv2-SP, atmos: ECHAM6.3 (spectral T63; 192 x 96 longitude/latitude; 47 levels; top level 0.01 hPa), land: JSBACH3.20, landIce: none/prescribed, ocean: MPIOM1.63 (bipolar GR1.5, approximately 1.5deg; 256 x 220 longitude/latitude; 40 levels; top grid cell 0-12 m), ocnBgchem: HAMOCC6, seaIce: unnamed (thermodynamic (Semtner zero-layer) dynamic (Hibler 79) sea ice model).
The model was run by the Max Planck Institute for Meteorology, Hamburg 20146, Germany (MPI-M) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, landIce: none, ocean: 250 km, ocnBgchem: 250 km, seaIce: 250 km.

MRI-ESM2-0

MRI (Meteorological Research Institute, Japan)The model used in climate research named MRI-ESM2.0, released in 2017, includes the components:
aerosol: MASINGAR mk2r4 (TL95; 192 x 96 longitude/latitude; 80 levels; top level 0.01 hPa), atmos: MRI-AGCM3.5 (TL159; 320 x 160 longitude/latitude; 80 levels; top level 0.01 hPa), atmosChem: MRI-CCM2.1 (T42; 128 x 64 longitude/latitude; 80 levels; top level 0.01 hPa), land: HAL 1.0, ocean: MRI.COM4.4 (tripolar primarily 0.5 deg latitude/1 deg longitude with meridional refinement down to 0.3 deg within 10 degrees north and south of the equator; 360 x 364 longitude/latitude; 61 levels; top grid cell 0-2 m), ocnBgchem: MRI.COM4.4, seaIce: MRI.COM4.4.
The model was run by the Meteorological Research Institute, Tsukuba, Ibaraki 305-0052, Japan (MRI) in native nominal resolutions: aerosol: 250 km, atmos: 100 km, atmosChem: 250 km, land: 100 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

NESM3

NUIST (Nanjing University of Information Science and Technology) The model used in climate research named NUIST ESM v3, released in 2016, includes the components:
atmos: ECHAM v6.3 (T63; 192 x 96 longitude/latitude; 47 levels; top level 1 Pa), land: JSBACH v3.1, ocean: NEMO v3.4 (NEMO v3.4, tripolar primarily 1deg; 384 x 362 longitude/latitude; 46 levels; top grid cell 0-6 m), seaIce: CICE4.1.
The model was run by the Nanjing University of Information Science and Technology, Nanjing, 210044, China (NUIST) in native nominal resolutions: atmos: 250 km, land: 2.5 km, ocean: 100 km, seaIce: 100 km.

NorCPM1

NCC (Norwegian Climate Centre)The model used in climate research named Norwegian Climate Prediction Model version 1, released in 2019, includes the components:
aerosol: OsloAero4.1 (same grid as atmos), atmos: CAM-OSLO4.1 (2 degree resolution; 144 x 96 longitude/latitude; 26 levels; top level ~2 hPa), atmosChem: OsloChemSimp4.1 (same grid as atmos), land: CLM4 (same grid as atmos), ocean: MICOM1.1 (1 degree resolution; 320 x 384 longitude/latitude; 53 levels; top grid cell 0-2.5 m [native model uses hybrid density and generic upper-layer coordinate interpolated to z-level for contributed data]), ocnBgchem: HAMOCC5.1 (same grid as ocean), seaIce: CICE4 (same grid as ocean).
The model was run by the NorESM Climate modeling Consortium consisting of CICERO (Center for International Climate and Environmental Research, Oslo 0349), MET-Norway (Norwegian Meteorological Institute, Oslo 0313), NERSC (Nansen Environmental and Remote Sensing Center, Bergen 5006), NILU (Norwegian Institute for Air Research, Kjeller 2027), UiB (University of Bergen, Bergen 5007), UiO (University of Oslo, Oslo 0313) and UNI (Uni Research, Bergen 5008), Norway. Mailing address: NCC, c/o MET-Norway, Henrik Mohns plass 1, Oslo 0313, Norway (NCC) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

NorESM1-F

NCC (Norwegian Climate Centre)The model used in climate research named NorESM1-F (a fast version of NorESM that is designed for paleo and multi-ensemble simulations), released in 2018, includes the components:
atmos: CAM4 (2 degree resolution; 144 x 96; 32 levels; top level 3 mb), land: CLM4, landIce: CISM, ocean: MICOM (1 degree resolution; 360 x 384; 70 levels; top grid cell minimum 0-2.5 m [native model uses hybrid density and generic upper-layer coordinate interpolated to z-level for contributed data]), ocnBgchem: HAMOCC5.1, seaIce: CICE4.
The model was run by the NorESM Climate modeling Consortium consisting of CICERO (Center for International Climate and Environmental Research, Oslo 0349), MET-Norway (Norwegian Meteorological Institute, Oslo 0313), NERSC (Nansen Environmental and Remote Sensing Center, Bergen 5006), NILU (Norwegian Institute for Air Research, Kjeller 2027), UiB (University of Bergen, Bergen 5007), UiO (University of Oslo, Oslo 0313) and UNI (Uni Research, Bergen 5008), Norway. Mailing address: NCC, c/o MET-Norway, Henrik Mohns plass 1, Oslo 0313, Norway (NCC) in native nominal resolutions: atmos: 250 km, land: 250 km, landIce: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

NorESM2-LM

NCC (Norwegian Climate Centre)The model used in climate research named NorESM2-LM (low atmosphere-medium ocean resolution, GHG concentration driven), released in 2017, includes the components:
aerosol: OsloAero, atmos: CAM-OSLO (2 degree resolution; 144 x 96; 32 levels; top level 3 mb), atmosChem: OsloChemSimp, land: CLM, landIce: CISM, ocean: MICOM (1 degree resolution; 360 x 384; 70 levels; top grid cell minimum 0-2.5 m [native model uses hybrid density and generic upper-layer coordinate interpolated to z-level for contributed data]), ocnBgchem: HAMOCC, seaIce: CICE.
The model was run by the NorESM Climate modeling Consortium consisting of CICERO (Center for International Climate and Environmental Research, Oslo 0349), MET-Norway (Norwegian Meteorological Institute, Oslo 0313), NERSC (Nansen Environmental and Remote Sensing Center, Bergen 5006), NILU (Norwegian Institute for Air Research, Kjeller 2027), UiB (University of Bergen, Bergen 5007), UiO (University of Oslo, Oslo 0313) and UNI (Uni Research, Bergen 5008), Norway. Mailing address: NCC, c/o MET-Norway, Henrik Mohns plass 1, Oslo 0313, Norway (NCC) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, atmosChem: 250 km, land: 250 km, landIce: 250 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

NorESM2-MM

NCC (Norwegian Climate Centre)The model used in climate research named NorESM2-MM (medium atmosphere-medium ocean resolution, GHG concentration driven), released in 2017, includes the components:
aerosol: OsloAero, atmos: CAM-OSLO (1 degree resolution; 288 x 192; 32 levels; top level 3 mb), atmosChem: OsloChemSimp, land: CLM, landIce: CISM, ocean: MICOM (1 degree resolution; 360 x 384; 70 levels; top grid cell minimum 0-2.5 m [native model uses hybrid density and generic upper-layer coordinate interpolated to z-level for contributed data]), ocnBgchem: HAMOCC, seaIce: CICE.
The model was run by the NorESM Climate modeling Consortium consisting of CICERO (Center for International Climate and Environmental Research, Oslo 0349), MET-Norway (Norwegian Meteorological Institute, Oslo 0313), NERSC (Nansen Environmental and Remote Sensing Center, Bergen 5006), NILU (Norwegian Institute for Air Research, Kjeller 2027), UiB (University of Bergen, Bergen 5007), UiO (University of Oslo, Oslo 0313) and UNI (Uni Research, Bergen 5008), Norway. Mailing address: NCC, c/o MET-Norway, Henrik Mohns plass 1, Oslo 0313, Norway (NCC) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, landIce: 100 km, ocean: 100 km, ocnBgchem: 100 km, seaIce: 100 km.

SAM0-UNICON

SNU (Seoul National University)

The atmospheric component of SEM0 is the Seoul National University Atmospheric Model Version 0 with a Unified Convection Scheme (SAM0-UNICON, Park et al. 2019, Park 2014a,b), which replaces CAM5's shallow and deep convection schemes and revises CAM5's cloud macrophysics scheme (Park et al. 2017). The other components of SEM0 (i.e., ocean, land, land-ice, sea-ice, and coupler) are identical to those of the Community Earth System Model version 1.2 (CESM1.2).

TaiESM1

AS-RCEC (Research Center for Environmental Changes)The model used in climate research named Taiwan Earth System Model 1.0, released in 2018, includes the components:
aerosol: SNAP (same grid as atmos), atmos: TaiAM1 (0.9x1.25 degree; 288 x 192 longitude/latitude; 30 levels; top level ~2 hPa), atmosChem: SNAP (same grid as atmos), land: CLM4.0 (same grid as atmos), ocean: POP2 (320x384 longitude/latitude; 60 levels; top grid cell 0-10 m), seaIce: CICE4.
The model was run by the Research Center for Environmental Changes, Academia Sinica, Nankang, Taipei 11529, Taiwan (AS-RCEC) in native nominal resolutions: aerosol: 100 km, atmos: 100 km, atmosChem: 100 km, land: 100 km, ocean: 100 km, seaIce: 50 km.

CNRM-ESM2-1

CNRM-CERFACS (National Center for Meteorological Research, Météo-France and CNRS laboratory, Climate Modeling and Global change)TACTIC (Tropospheric Aerosols for ClimaTe In CNRM) is an interactive tropospheric aerosol scheme, able to represent the main anthropogenic and natural aerosol types in the troposphere. Originally developed in the GEMS/MACC project (Morcrette et al., 2009), this scheme has been adapted to the ARPEGE/ALADIN-Climat models (Michou et al., 2015 and Nabat et al., 2015). Aerosols are included through sectional bins, separating desert dust (3 size bins), sea-salt (3 size bins), sulphate (1 bin, as well as 1 additional variable for sulfate precursors considered as SO2), organic matter (2 bins: hydrophobic and hydrophilic particles) and black carbon (2 bins: hydrophobic and hydrophilic particles) particles. All these 12 species are prognostic variables in the model, submitted to transport (semi-lagrangian advection, and convective transport), dry deposition, in-cloud and below-cloud scavenging. The interaction with shortwave and longwave radiation, is also taken into account through optical properties (extinction coefficient, single scattering albedo and asymmetry parameter) calculated using the Mie theory. Sulfate, organic matter and sea salt concentrations are used to determine the cloud droplet number concentration following Menon et al. (2002), thus representing the cloud-albedo effect (1st indirect aerosol effect).

E3SM-1-0

E3SM-Project LLNL (Energy Exascale Earth System Model, Lawrence Livermore National Laboratory)

E3SM-1-1

E3SM-Project RUBISCO (Energy Exascale Earth System Model, Reducing Uncertainty in Biogeochemical Interactions through Synthesis and COmputation)E3SM 1.1 (Energy Exascale Earth System Model)

E3SM-1-1-ECA

E3SM-Project  (Energy Exascale Earth System Model)E3SM 1.1 (Energy Exascale Earth System Model) with an experimental land BGC ECA configuration

EC-Earth3

EC-Earth-ConsortiumThe atmosphere-ocean general circulation model is described by Doescher-et-al-2020. The atmosphere is a modified version of IFS cycle 36r4, and includes the land-surface scheme H-TESSEL. The ocean and sea-ice model is NEMO-LIM3 version 3.6 with a few modifications. The OASIS3-MCT coupler version 3.0 is used to exchange fields between the atmosphere and ocean components.

EC-Earth3-LR

EC-Earth-ConsortiumThe atmosphere-ocean general circulation model is described by Doescher-et-al-2020. The atmosphere is a modified version of IFS cycle 36r4, and includes the land-surface scheme H-TESSEL. The ocean and sea-ice model is NEMO-LIM3 version 3.6 with a few modifications. The OASIS3-MCT coupler version 3.0 is used to exchange fields between the atmosphere and ocean components.

EC-Earth3-Veg

EC-Earth-ConsortiumThe atmosphere-ocean general circulation model is described by Doescher-et-al-2020. The atmosphere is a modified version of IFS cycle 36r4, and includes the land-surface scheme H-TESSEL. The ocean and sea-ice model is NEMO-LIM3 version 3.6 with a few modifications. The OASIS3-MCT coupler version 3.0 is used to exchange fields between the atmosphere and ocean components.

EC-Earth3-Veg-LR

EC-Earth-ConsortiumThe atmosphere-ocean general circulation model is described by Doescher-et-al-2020. The atmosphere is a modified version of IFS cycle 36r4, and includes the land-surface scheme H-TESSEL. The ocean and sea-ice model is NEMO-LIM3 version 3.6 with a few modifications. The OASIS3-MCT coupler version 3.0 is used to exchange fields between the atmosphere and ocean components.

FGOALS-f3-L

CAS (Chinese Academy of Sciences)

FGOALS-g3

CAS (Chinese Academy of Sciences)

FIO-ESM-2-0

FIO-QLNM (First Institute of Oceanography (FIO) and Qingdao National Laboratory for Marine Science and Technology (QNLM))

GFDL-AM4

NOAA-GFDL (National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory)This is the Atmosphere and Land component (AM4.0.1) of GFDL coupled model CM4.0 for use in CMIP6. The Atmospheric component is identifical to the AM4.0 model documented in Zhao et. al (2018a, 2018b). The vegetation, land and glacier models differ from AM4.0 in the following aspects: 1) dynamical vegetation was used instead the static vegetation used in AM4.0. 2) glacier albedo is retuned. 3) other minor tuning in the land model.

GFDL-CM4

NOAA-GFDL (National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory)This is the GFDL physical coupled model CM4.0 for use in CMIP6. The model is documented in Held et al (2019)

GFDL-ESM4

NOAA-GFDL (National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory)

GISS-E2-1-G

NASA-GISS  (National Oceanic and Atmospheric Administration, Goddard Institute for Space Studies)

GISS-E2-1-H

NASA-GISS  (National Oceanic and Atmospheric Administration, Goddard Institute for Space Studies)

GISS-E2-2-G

NASA-GISS  (National Oceanic and Atmospheric Administration, Goddard Institute for Space Studies)

HadGEM3-GC31-LL

MOHC NERC (Met Office Hadley Centre, Natural Environmental Research Council)Aerosol2: UKCA-GLOMAP-mode, atmos: MetUM-HadGEM3-GA7.1 (N96;192 x 144 longitude/latitude; 85 levels; top level 85km), atmosChem: none, land: JULES-HadGEM3-GL7.1, landIce: none, ocean: NEMO-HadGEM3-GO6.0 (ORCA1 tripolar primarily 1 deg latitude/longitude with meridional refinement down to 1/3 deg in tropics; 400 x 180 longitude/latitude; 75 levels; top grid cell 0-1m), ocnBgchem: none, seaIce: CICE-HadGEM3-GSI8 (ORCA1 tripolar primarily 1 deg; 360 x 180 longitude/latitude).

HadGEM3-GC31-MM

MOHC (Met Office Hadley Centre)

IITM-ESM

CCCR-IITM (Centre for Climate Change Research,  Indian Institute of Tropical Meteorology)

INM-CM4-8

INM (Institute of Numerical Mathematics)

INM-CM5-0

INM (Institute of Numerical Mathematics)

IPSL-CM6A-LR

IPSL (Institut Pierre‐Simon Laplace)

KACE-1-0-G

NIMS-KMA (National Institute of Meteorological Sciences/Korea Met. Administration)

KIOST-ESM

KIOST (Korea Institute of Ocean Science and Technology)

MCM-UA-1-0

UA (University of Arizona - Department of Geosciences)R30 spectral atmosphere coupled to MOM1 ocean using simple Manabe land model and simple Bryan sea ice model.

MIROC6

MIROC (Atmosphere and Ocean Research Institute (AORI), Centre for Climate System Research - National Institute for Environmental Studies (CCSR-NIES) and Atmosphere and Ocean Research Institute (AORI))MIROC6 is a physical climate model mainly composed of three sub-models: atmosphere, land, and sea ice-ocean. The atmospheric model is based on the CCSR-NIES atmospheric general circulation model. The horizontal resolution is a T85 spectral truncation that is an approximately 1.4° grid interval for both latitude and longitude. The vertical grid coordinate is a hybrid σ-p coordinate. The model top is placed at 0.004 hPa, and there are 81 vertical levels. The Spectral Radiation-Transport Model for Aerosol Species (SPRINTARS) is used as an aerosol module for MIROC6 to predict the mass mixing ratios of the main tropospheric aerosols. By coupling the radiation and cloud-precipitation schemes, SPRINTARS calculates not only the aerosol transport processes but also the aerosol-radiation and aerosol-cloud interactions.The land surface model is based on Minimal Advanced Treatments of Surface Interaction and Runoff (MATSIRO), which includes a river routing model based on a kinematic wave flow equation and a lake module where one-dimensional thermal diffusion and mass conservation are considered. The horizontal resolution of the land surface model is the same as that of the atmopheric component. There are a three-layers snow and a six-layers soil down to a 14 m depth.The sea ice-ocean model is based on the CCSR Ocean Component model (COCO). The tripolar horizontal coordinate system is adopted, and the longitudinal grid spacing is 1° and the meridional grid spacing varies from about 0.5° near the equator to 1° in the mid-latitudes. There are 62 vertical levels in a hybrid σ-z coordinate system. A coupler system calculates heat and freshwater fluxes between the sub-models in order to ensure that all fluxes are conserved within machine precision and then exchanges the fluxes among the sub-models. No flux adjustments are used in MIROC6.

MIROC-ES2L

MIROC (Atmosphere and Ocean Research Institute (AORI), Centre for Climate System Research - National Institute for Environmental Studies (CCSR-NIES) and Atmosphere and Ocean Research Institute (AORI))MIROC-AGCM is the atmospheric component of a climate model, the Model for Interdisciplinary Research on Climate version 6 (MIROC6). The MIROC-AGCM employs a spectral dynamical core, and standard physical parameterizations for cumulus convections, radiative transfer, cloud microphysics, turbulence, and gravity wave drag. It also has an aerosol module. The model is cooperatively developed by the Japanese modeling community including the Atmosphere and Ocean Research Institute, the University of Tokyo, the Japan Agency for Marine-Earth Science and Technology, and the National Institute for Environmental Studies.

MPI-ESM-1-2-HAM

HAMMOZ-Consortium (Swiss Federal Institute of Technology Zurich (ETH-Zurich), Max Planck Institute for Meteorology (MPI-M), Forschungszentrum Jülich, University of Oxford, Finnish Meteorological Institute (FMI), Leibniz Institute for Tropospheric Research (IfT) and Center for Climate Systems Modeling (C2SM) at ETH Zurich)MPI-ESM1.2-HAM is the latest version of the Max Planck Institute for Meteorology Earth System Model (MPI-ESM1.2) coupled with the Hamburg Aerosol Module (HAM2.3), developed by the HAMMOZ consortium. The HAMMOZ consortium is composed of ETH Zurich, Max Planck Institut for Meteorology, Forschungszentrum Jülich, University of Oxford, the Finnish Meteorological Institute and the Leibniz Institute for Tropospheric Research, and managed by the Center for Climate Systems Modeling (C2SM) at ETH Zurich.

MPI-ESM1-2-HR

MPI-M DWD DKRZ (Max Planck Institute for Meteorology (MPI-M), German Meteorological Service (DWD), German Climate Computing Center (DKRZ))

MPI-ESM1-2-LR

MPI-M AWI (Max Planck Institute for Meteorology (MPI-M), AWI (Alfred Wegener Institute))

MRI-ESM2-0

MRI (Meteorological Research Institute, Japan)

NESM3

NUIST (Nanjing University of Information Science and Technology) 

NorCPM1

NCC (Norwegian Climate Centre)

NorESM1-F

NCC (Norwegian Climate Centre)

NorESM2-LM

NCC (Norwegian Climate Centre)

NorESM2-MM

NCC (Norwegian Climate Centre)

SAM0-UNICON

SNU (Seoul National University)

The atmospheric component of SEM0 is the Seoul National University Atmospheric Model Version 0 with a Unified Convection Scheme (SAM0-UNICON, Park et al. 2019, Park 2014a,b), which replaces CAM5's shallow and deep convection schemes and revises CAM5's cloud macrophysics scheme (Park et al. 2017). The other components of SEM0 (i.e., ocean, land, land-ice, sea-ice, and coupler) are identical to those of the Community Earth System Model version 1.2 (CESM1.2).

TaiESM1

AS-RCEC (Research Center for Environmental Changes)

UKESM1-0-LL

MOHC, NERC, NIMS-KMA, NIWA  (Met Office Hadley Centre, Natural Environmental Research Council,  National Institute of Meteorological Science / Korean Meteorological Administration (NIMS-KMA), National Institute of Weather and Atmospheric Research (NIWA)) 


...