Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Expand
titleClick here to expand... CMIP6 experiments included in the CDS


Experiment name

Extended Description

historical

The historical experiment is a simulation of the recent past from 1850 to 2014, it is performed with a coupled atmosphere-ocean general circulation model (AOGCM). In the historical simulations the model is forced with changing conditions (consistent with observations) which include atmospheric composition, land use and solar forcing. The initial conditions for the historical simulation are taken from the pre-industrial control simulation (piControl) at a point where the remaining length of the piControl is sufficient to extend beyond the period of the historical simulation to the end of any future "scenario" simulations run by the same model. The historical simulation is used to evaluate model performance against present climate and observed climate change.

ssp585

ssp585 is a scenario experiment extending into the near future from 2015 to 2100, it is performed with a coupled atmosphere-ocean general circulation model (AOGCM). The forcing for the CMIP6 SSP experiments is derived from shared socioeconomic pathways (SSPs), a set of emission scenarios driven by different socioeconomic assumptions, paired with representative concentration pathways (RCPs), global forcing pathways which lead to specific end of century radiative forcing targets. ssp585 is based on SSP5 in which climate change mitigation challenges dominate and RCP8.5, a future pathway with a radiative forcing of 8.5 W/m2 in the year 2100. The ssp585 scenario represents the high end of plausible future forcing pathways.  ssp585 is comparable to the CMIP5 experiment RCP8.5.

ssp370

ssp370 is a scenario experiment extending into the near future from 2015 to 2100, it is performed with a coupled atmosphere-ocean general circulation model (AOGCM). The forcing for the CMIP6 SSP experiments is derived from shared socioeconomic pathways (SSPs), a set of emission scenarios driven by different socioeconomic assumptions, paired with representative concentration pathways (RCPs), global forcing pathways which lead to specific end of century radiative forcing targets. ssp370 is based on SSP3 in which climate change mitigation and adaptation challenges are high and RCP7.0, a future pathway with a radiative forcing of 7.0 W/m2 in the year 2100. The ssp370 scenario represents the medium to high end of plausible future forcing pathways. ssp370 fills a gap in the CMIP5 forcing pathways that is particularly important because it represents a forcing level common to several (unmitigated) SSP baseline pathways.

ssp245

ssp245 is a scenario experiment extending into the near future from 2015 to 2100, it is performed with a coupled atmosphere-ocean general circulation model (AOGCM). The forcing for the CMIP6 SSP experiments is derived from shared socioeconomic pathways (SSPs), a set of emission scenarios driven by different socioeconomic assumptions, paired with representative concentration pathways (RCPs), global forcing pathways which lead to specific end of century radiative forcing targets. ssp245 is based on SSP2 with intermediate climate change mitigation and adaptation challenges and RCP4.5, a future pathway with a radiative forcing of 4.5 W/m2 in the year 2100. The ssp245 scenario represents the medium part of plausible future forcing pathways. ssp245 is comparable to the CMIP5 experiment RCP4.5.

ssp126

ssp126 is a scenario experiment extending into the near future from 2015 to 2100, it is performed with a coupled atmosphere-ocean general circulation model (AOGCM). The forcing for the CMIP6 SSP experiments is derived from shared socioeconomic pathways (SSPs), a set of emission scenarios driven by different socioeconomic assumptions, paired with representative concentration pathways (RCPs), global forcing pathways which lead to specific end of century radiative forcing targets. ssp126 is based on SSP1 with low climate change mitigation and adaptation challenges and RCP2.6, a future pathway with a radiative forcing of 2.6 W/m2 in the year 2100. The ssp126 scenario represents the low end of plausible future forcing pathways. ssp126 depicts a "best case" future from a sustainability perspective.

ssp460

ssp460 is a scenario experiment extending into the near future from 2015 to 2100, it is performed with a coupled atmosphere-ocean general circulation model (AOGCM). The forcing for the CMIP6 SSP experiments is derived from shared socioeconomic pathways (SSPs), a set of emission scenarios driven by different socioeconomic assumptions, paired with representative concentration pathways (RCPs), global forcing pathways which lead to specific end of century radiative forcing targets. ssp460 is based on SSP4 in which climate change adaptation challenges dominate and RCP6.0, a future pathway with a radiative forcing of 6.0 W/m2 in the year 2100. The ssp460 scenario fills in the range of medium plausible future forcing pathways. ssp370 defines the low end of the forcing range for unmitigated SSP baseline scenarios.

ssp434

ssp434 is a scenario experiment extending into the near future from 2015 to 2100, it is performed with a coupled atmosphere-ocean general circulation model (AOGCM). The forcing for the CMIP6 SSP experiments is derived from shared socioeconomic pathways (SSPs), a set of emission scenarios driven by different socioeconomic assumptions, paired with representative concentration pathways (RCPs), global forcing pathways which lead to specific end of century radiative forcing targets. ssp434 is based on SSP4 in which climate change adaptation challenges dominate and RCP3.4, a future pathway with a radiative forcing of 3.4 W/m2 in the year 2100. The ssp434 scenario fills a gap at the low end of the range of plausible future forcing pathways. ssp370 is of interest to mitigation policy since mitigation costs differ substantially between forcing levels of 4.5 W/m2 and 2.6 W/m2.

ssp534-over

ssp534-over is a scenario experiment with simulations beginning in the mid-21st century running from 2040 to 2100, it is performed with a coupled atmosphere-ocean general circulation model (AOGCM). The forcing for the CMIP6 SSP experiments is derived from shared socioeconomic pathways (SSPs), a set of emission scenarios driven by different socioeconomic assumptions, paired with representative concentration pathways (RCPs), global forcing pathways which lead to specific end of century radiative forcing targets. ssp534-over is based on SSP5 in which climate change mitigation challenges dominate and RCP3.4-over, a future pathway with a peak and decline in forcing towards an eventual radiative forcing of 3.4 W/m2 in the year 2100. The ssp534-over scenario branches from ssp585 in the year 2040 whereupon it applies substantially negative net emissions. ssp534-over explores the climate science and policy implications of a peak and decline in forcing during the 21st century. ssp534 fills a gap in existing climate simulations by investigating the implications of a substantial overshoot in radiative forcing relative to a longer-term target.

ssp119

ssp119 is a scenario experiment extending into the near future from 2015 to 2100, it is performed with a coupled atmosphere-ocean general circulation model (AOGCM). The forcing for the CMIP6 SSP experiments is derived from shared socioeconomic pathways (SSPs), a set of emission scenarios driven by different socioeconomic assumptions, paired with representative concentration pathways (RCPs), global forcing pathways which lead to specific end of century radiative forcing targets. ssp119 is based on SSP1 with low climate change mitigation and adaptation challenges and RCP1.9, a future pathway with a radiative forcing of 1.9 W/m2 in the year 2100. The ssp119 scenario fills a gap at the very low end of the range of plausible future forcing pathways. ssp119 forcing will be substantially below ssp126 in 2100. There is policy interest in low-forcing scenarios that would inform a possible goal of limiting global mean warming to 1.5°C above pre-industrial levels based on the Paris COP21 agreement.



Models, grids and pressure levels

Models 

The models included in the CDS-CMIP6 subset are detailed in the table below including a brief description of the model where this information is readily available, further details can be found on the Earth System Documentation site.

...

Expand
titleClick here to expand...Global climate models included in the CDS


Model Name

Modelling Centre

Model Details 

ACCESS-CM2

CSIRO-ARCCSS (Commonwealth Scientific and Industrial Research Organisation, Australian Research Council Centre of Excellence for Climate System Science)

The model used in climate research named Australian Community Climate and Earth System Simulator Climate Model Version 2 was released in 2019.
The model was run by the CSIRO (Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria 3195, Australia), ARCCSS (Australian Research Council Centre of Excellence for Climate System Science). Mailing address: CSIRO, c/o Simon J. Marsland, 107-121 Station Street, Aspendale, Victoria 3195, Australia AH: DO WE REALLY NEED THE PRECISE ADDRESS OF THE INSTITUTE?  (CSIRO-ARCCSS) in native nominal resolutions: aerosol: 250 km, atmosphere: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.

ACCESS-ESM1-5

CSIRO (Commonwealth Scientific and Industrial Research Organisation)The model used in climate research named Australian Community Climate and Earth System Simulator Earth System Model Version 1.5 was released in 2019.
The model was run by the Commonwealth Scientific and Industrial Research Organisation, Aspendale, Victoria, Australia (CSIRO) in native nominal resolutions: aerosol: 250 km, atmosphere: 250 km, land: 250 km, ocean: 100 km, ocean biogeochemistry: 100 km, seaIce: 100 km.

AWI-CM-1-1-MR

AWI (Alfred Wegener Institute)

AWI-CM 1.1 MR is the Alfred Wegener Institute Climate Model, it couples a medium-resolution "MR" Finite Element Sea Ice-Ocean Model (FESOM) to the ECHAM6 atmospheric model. The spatial resolution of the FESOM MR grid is locally increased up to 8 km in regions of high sea surface height (SSH) variability and reduced to 80 km over areas with low SSH variability. DO WE KNOW ANYTHING ABOUT THE RESOLUTION OF THE ATMOSPHERIC MODEL?

AWI-ESM-1-1-LR

AWI (Alfred Wegener Institute)AWI-ESM 1.1 LR is an extension of the AWI-CM for earth system modelling. DO WE HAVE ANY INFORMATION ABOUT RESOLUTION? IT IS LR, SO IT SHOULD BE LOWER RESOLUTION, I GUESS.

BCC-CSM2-MR

BCC (Beijing Climate Center)The model used in climate research named BCC-CSM 2 MR was released in 2017.
The model was run by the Beijing Climate Center, Beijing, China (BCC) in native nominal resolutions: atmosphere: 100 km, land: 100 km, ocean: 50 km, seaIce: 50 km.

BCC-ESM1

BCC  (Beijing Climate Center)The model used in climate research named BCC-ESM 1 was released in 2017. 
The model was run by the Beijing Climate Center, Beijing, China (BCC) in native nominal resolutions: atmosphere: 250 km, atmospheric chemistry: 250 km, land: 250 km, ocean: 50 km, seaIce: 50 km.

CAMS-CSM1-0

CAMS (Chinese Academy of Meteorological Sciences)The model used in climate research named CAMS-CSM 1.0 was released in 2016.
The model was run by the Chinese Academy of Meteorological Sciences, Beijing, China (CAMS) in native nominal resolutions: atmosphere: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.

CanESM5

CCCma (Canadian Centre for Climate Modelling and Analysis)The model used in climate research named CanESM5 was released in 2019.
The model was run by the Canadian Centre for Climate Modelling and Analysis, Environment and Climate Change Canada, Victoria, Canada (CCCma) in native nominal resolutions: aerosol: 500 km, atmosphere: 500 km, atmospheric chemistry: 500 km, land: 500 km, landIce: 500 km, ocean: 100 km, ocean biogeochemistry: 100 km, seaIce: 100 km.

CanESM5-CanOE

CCCma (Canadian Centre for Climate Modelling and Analysis)CanESM5-CanOE is identical to CanESM5, except that CMOC was replaced with CanOE (Canadian Ocean Ecosystem model). WHAT IS CMOC, I THINK WE HAVE TO EXPLAIN IT, HERE OR IN THE PREVIOUS ITEM.

CAS-ESM2-0

CAS (Chinese Academy of Sciences)The model used in climate research named CAS-ESM 2.0 (Chinese Academy of Sciences Earth System Model version 2.0) was released in 2019.
The model was run by the Chinese Academy of Sciences, Beijing, China (CAS) in native nominal resolutions: aerosol: 100 km, atmosphere: 100 km, atmospheric chemistry: 100 km, land: 100 km, ocean: 100 km, ocean biogeochemistry: 100 km, seaIce: 100 km.

CESM2

NCAR (National Center for Atmospheric Research)The Community Earth System Model version 2 (CESM2) is a state-of-the-art coupled model that includes ocean, wave, land, land-ice, sea-ice, and river runoff models as well as both low-top and high-top full chemistry versions of atmospheric models. The model also includes biogeochemistry. RESOLUTION?

CESM2-FV2

NCAR (National Center for Atmospheric Research)

The model used in climate research named CESM2-FV2 was released in 2019.
The model was run by the National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, Boulder, CO, USA (NCAR) in native nominal resolutions: aerosol: 250 km, atmosphere: 250 km, atmospheric chemistry: 250 km, land: 250 km, landIce: 5 km, ocean: 100 km, ocean biogeochemistry: 100 km, seaIce: 100 km.

CESM2-WACCM

NCAR (National Center for Atmospheric Research)The model used in climate research named CESM2-WACCM was released in 2018.
The model was run by the National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, Boulder, CO, USA (NCAR) in native nominal resolutions: aerosol: 100 km, atmosphere: 100 km, atmospheric chemistry: 100 km, land: 100 km, landIce: 5 km, ocean: 100 km, ocean biogeochemistry: 100 km, seaIce: 100 km.

CESM2-WACCM-FV2

NCAR (National Center for Atmospheric Research)The model used in climate research named CESM2-WACCM-FV2 was released in 2019.
The model was run by the National Center for Atmospheric Research, Climate and Global Dynamics Laboratory, Boulder, CO, USA (NCAR) in native nominal resolutions: aerosol: 250 km, atmosphere: 250 km, atmospheric chemistry: 250 km, land: 250 km, landIce: 5 km, ocean: 100 km, ocean biogeochemistry: 100 km, seaIce: 100 km.

CIESM

THU (Tsinghua University - Department of Earth System Science)The model used in climate research named Community Integrated Earth System Model was released in 2017.
The model was run by the Department of Earth System Science, Tsinghua University, Beijing, China (THU) in native nominal resolutions: aerosol: 100 km, atmosphere: 100 km, atmospheric chemistry: 100 km, land: 100 km, ocean: 50 km, seaIce: 50 km.

CMCC-CM2-SR5

CMCC (Centro Euro-Mediterraneo per I Cambiamenti Climatici)The model used in climate research named CMCC-CM2-SR5 was released in 2016.
The model was run by the Fondazione Centro Euro-Mediterraneo sui Cambiamenti Climatici, Lecce, Italy (CMCC) in native nominal resolutions: aerosol: 100 km, atmosphere: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.

CNRM-CM6-1

CNRM-CERFACS (National Center for Meteorological Research, Météo-France and CNRS laboratory, Climate Modeling and Global change)ARPEGE-Climat Version 6.3 is the atmospheric component of the CNRM climate and Earth System models (CNRM-CM6-1 and CNRM-ESM2-1). It is based on the cycle 37 of the ARPEGE/IFS model (declared in 2010), developed under a collaboration between Météo-France and ECMWF. ARPEGE-Climat shares a large part of its physics and dynamics with its NWP counterpart ARPEGE used operationally at Météo-France. In comparison to ARPEGE-Climat Version 5.1 used for the CMIP5 exercise in CNRM-CM5.1, most of the atmospheric physics has been updated or revisited (Roehrig et al. 2019, Voldoire et al. 2019). For the surface, it is coupled to the SURFEX platform (Decharme et al. 2019). RESOLUTION?

CNRM-CM6-1-HR

CNRM-CERFACS (National Center for Meteorological Research, Météo-France and CNRS laboratory, Climate Modeling and Global change)The model used in climate research named CNRM-CM6-1-HR was released in 2017.
The model was run by the CNRM (Centre National de Recherches Meteorologiques, Toulouse, France), CERFACS (Centre Europeen de Recherche et de Formation Avancee en Calcul Scientifique, Toulouse, France) (CNRM-CERFACS) in native nominal resolutions: aerosol: 100 km, atmosphere: 100 km, atmospheric chemistry: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km.

CNRM-ESM2-1

CNRM-CERFACS (National Center for Meteorological Research, Météo-France and CNRS laboratory, Climate Modeling and Global change)TACTIC (Tropospheric Aerosols for ClimaTe In CNRM) is an interactive tropospheric aerosol scheme, able to represent the main anthropogenic and natural aerosol types in the troposphere. Originally developed in the GEMS/MACC project (Morcrette et al., 2009), this scheme has been adapted to the ARPEGE/ALADIN-Climat models (Michou et al., 2015 and Nabat et al., 2015). Aerosols are included through sectional bins, separating desert dust (3 size bins), sea-salt (3 size bins), sulphate (1 bin, as well as 1 additional variable for sulfate precursors considered as SO2), organic matter (2 bins: hydrophobic and hydrophilic particles) and black carbon (2 bins: hydrophobic and hydrophilic particles) particles. All these 12 species are prognostic variables in the model, submitted to transport (semi-lagrangian advection, and convective transport), dry deposition, in-cloud and below-cloud scavenging. The interaction with shortwave and longwave radiation, is also taken into account through optical properties (extinction coefficient, single scattering albedo and asymmetry parameter) calculated using the Mie theory. Sulfate, organic matter and sea salt concentrations are used to determine the cloud droplet number concentration following Menon et al. (2002), thus representing the cloud-albedo effect (1st indirect aerosol effect). I DON't UNDERSTAND HERE WHY THE DESCRIPTION OF THE TACTIC MODEL IS RELEVANT HERE!

E3SM-1-0

E3SM-Project LLNL (Energy Exascale Earth System Model, Lawrence Livermore National Laboratory)The model used in climate research named E3SM 1.0 (Energy Exascale Earth System Model) was released in 2018.
The model was run by the LLNL; BNL (Brookhaven National Laboratory, Upton, NY, USA); LANL (Los Alamos National Laboratory, Los Alamos, NM, USA); LBNL (Lawrence Berkeley National Laboratory, Berkeley, CA, USA); ORNL (Oak Ridge National Laboratory, Oak Ridge, TN, USA); PNNL (Pacific Northwest National Laboratory, Richland, WA, USA); SNL (Sandia National Laboratories, Albuquerque, NM, USA). Mailing address: LLNL Climate Program, c/o David C. Bader, Principal Investigator, L-103, 7000 East Avenue, Livermore, CA 94550, USA I REALLY DON'T THINK THAT IS NEEDED HERE!  (E3SM-Project) in native nominal resolutions: aerosol: 100 km, atmosphere: 100 km, atmospheric chemistry: 100 km, land: 100 km, ocean: 50 km, seaIce: 50 km.

E3SM-1-1

E3SM-Project RUBISCO (Energy Exascale Earth System Model, Reducing Uncertainty in Biogeochemical Interactions through Synthesis and COmputation)The model used in climate research named E3SM 1.1 (Energy Exascale Earth System Model) was released in 2019.
The model was run by the LLNL; ANL (Argonne National Laboratory, Argonne, IL, USA); BNL (Brookhaven National Laboratory, Upton, NY, USA); LANL (Los Alamos National Laboratory, Los Alamos, NM, USA); LBNL (Lawrence Berkeley National Laboratory, Berkeley, CA, USA); ORNL (Oak Ridge National Laboratory, Oak Ridge, TN, USA); PNNL (Pacific Northwest National Laboratory, Richland, WA, USA); SNL (Sandia National Laboratories, Albuquerque, NM, USA). Mailing address: LLNL Climate Program, c/o David C. Bader, Principal Investigator, L-103, 7000 East Avenue, Livermore, CA 94550, USA (E3SM-Project) in native nominal resolutions: aerosol: 100 km, atmosphere: 100 km, atmospheric chemistry: 100 km, land: 100 km, ocean: 50 km, ocean biogeochemistry: 50 km, seaIce: 50 km.

E3SM-1-1-ECA

E3SM-Project  (Energy Exascale Earth System Model)The model used in climate research named E3SM 1.1 (Energy Exascale Earth System Model) with an experimental land BGC ECA configuration was released in 2019.
The model was run by the LLNL (Lawrence Livermore National Laboratory, Livermore, CA, USA); ANL (Argonne National Laboratory, Argonne, IL, USA); BNL (Brookhaven National Laboratory, Upton, NY, USA); LANL (Los Alamos National Laboratory, Los Alamos, NM, USA); LBNL (Lawrence Berkeley National Laboratory, Berkeley, CA, USA); ORNL (Oak Ridge National Laboratory, Oak Ridge, TN, USA); PNNL (Pacific Northwest National Laboratory, Richland, WA, USA); SNL (Sandia National Laboratories, Albuquerque, NM, USA). Mailing address: LLNL Climate Program, c/o David C. Bader, Principal Investigator, L-103, 7000 East Avenue, Livermore, CA 94550, USA (E3SM-Project) in native nominal resolutions: aerosol: 100 km, atmosphere: 100 km, atmospheric chemistry: 100 km, land: 100 km, ocean: 50 km, ocean biogeochemistry: 50 km, seaIce: 50 km.

EC-Earth3

EC-Earth-ConsortiumThe atmosphere-ocean general circulation model is described by Doescher et al. 2020. The atmosphere is a modified version of IFS cycle 36r4, and includes the land-surface scheme H-TESSEL. The ocean and sea-ice model is NEMO-LIM3 version 3.6 with a few modifications. The OASIS3-MCT coupler version 3.0 is used to exchange fields between the atmosphere and ocean components.

EC-Earth3-LR

EC-Earth-ConsortiumThe atmosphere-ocean general circulation model is described by Doescheret al 2020. The atmosphere is a modified version of IFS cycle 36r4, and includes the land-surface scheme H-TESSEL. The ocean and sea-ice model is NEMO-LIM3 version 3.6 with a few modifications. The OASIS3-MCT coupler version 3.0 is used to exchange fields between the atmosphere and ocean components.

EC-Earth3-Veg

EC-Earth-ConsortiumThe atmosphere-ocean general circulation model is described by Doescher et al 2020. The atmosphere is a modified version of IFS cycle 36r4, and includes the land-surface scheme H-TESSEL. The ocean and sea-ice model is NEMO-LIM3 version 3.6 with a few modifications. The OASIS3-MCT coupler version 3.0 is used to exchange fields between the atmosphere and ocean components.

EC-Earth3-Veg-LR

EC-Earth-ConsortiumThe atmosphere-ocean general circulation model is described by Doescher et al 2020. The atmosphere is a modified version of IFS cycle 36r4, and includes the land-surface scheme H-TESSEL. The ocean and sea-ice model is NEMO-LIM3 version 3.6 with a few modifications. The OASIS3-MCT coupler version 3.0 is used to exchange fields between the atmosphere and ocean components. IT SEEMS TO ME THAT THE TEXT FOR THESE 4 MODELS ABOVE IS THE SAME. WE NEED TO EXPLAIN THE DIFFERENCES BETWEEN THEN. 

FGOALS-f3-L

CAS (Chinese Academy of Sciences)The model used in climate research named FGOALS-f3-L was released in 2017.
The model was run by the Chinese Academy of Sciences, Beijing, China (CAS) in native nominal resolutions: atmosphere: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.

FGOALS-g3

CAS (Chinese Academy of Sciences)The model used in climate research named FGOALS-g3 was released in 2017.
The model was run by the Chinese Academy of Sciences, Beijing, China (CAS) in native nominal resolutions: atmosphere: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.

FIO-ESM-2-0

FIO-QLNM (First Institute of Oceanography (FIO) and Qingdao National Laboratory for Marine Science and Technology (QNLM))The model used in climate research named FIO-ESM 2.0 was released in 2018.
The model was run by the FIO (First Institute of Oceanography, Ministry of Natural Resources, Qingdao, China), QNLM (Qingdao National Laboratory for Marine Science and Technology, Qingdao, China) (FIO-QLNM) in native nominal resolutions: aerosol: 100 km, atmosphere: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.

GFDL-AM4

NOAA-GFDL (National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory)This is the Atmosphere and Land component (AM4.0.1) of GFDL coupled model CM4.0 for use in CMIP6. The Atmospheric component is identical to the AM4.0 model documented in Zhao et. al (2018). The vegetation, land and glacier models differ from AM4.0 in the following aspects: 1) dynamical vegetation was used instead the static vegetation used in AM4.0. 2) glacier albedo is retuned. 3) other minor tuning in the land model. RESOLUTION?

GFDL-CM4

NOAA-GFDL (National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory)This is the GFDL physical coupled model CM4.0 for use in CMIP6. The model is documented in Held et al (2019). RESOLUTION?

GFDL-ESM4

NOAA-GFDL (National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory)The model used in climate research named GFDL-ESM4 was released in 2018.
The model was run by the National Oceanic and Atmospheric Administration, Geophysical Fluid Dynamics Laboratory, Princeton, NJ, USA (NOAA-GFDL) in native nominal resolutions: aerosol: 100 km, atmosphere: 100 km, atmospheric chemistry: 100 km, land: 100 km, landIce: 100 km, ocean: 50 km, ocean biogeochemistry: 50 km, seaIce: 50 km.

GISS-E2-1-G

NASA-GISS  (National Oceanic and Atmospheric Administration, Goddard Institute for Space Studies)The model used in climate research named GISS-E2.1G was released in 2019.
The model was run by the Goddard Institute for Space Studies, New York, NY, USA (NASA-GISS) in native nominal resolutions: aerosol: 250 km, atmosphere: 250 km, atmospheric chemistry: 250 km, land: 250 km, ocean: 100 km, seaIce: 250 km.

GISS-E2-1-H

NASA-GISS  (National Oceanic and Atmospheric Administration, Goddard Institute for Space Studies)The model used in climate research named GISS-E2.1H was released in 2019.
The model was run by the Goddard Institute for Space Studies, New York, NY, USA (NASA-GISS) in native nominal resolutions: aerosol: 250 km, atmosphere: 250 km, atmospheric chemistry: 250 km, land: 250 km, ocean: 100 km, seaIce: 250 km.

GISS-E2-2-G

NASA-GISS  (National Oceanic and Atmospheric Administration, Goddard Institute for Space Studies)The model used in climate research named GISS-E2-2-G was released in 2019.
The model was run by the Goddard Institute for Space Studies, New York, NY, USA (NASA-GISS) in native nominal resolutions: aerosol: 250 km, atmosphere: 250 km, atmospheric chemistry: 250 km, land: 250 km, landIce: 250 km, ocean: 100 km, seaIce: 100 km.

HadGEM3-GC31-LL

MOHC NERC (Met Office Hadley Centre, Natural Environmental Research Council)The model used in climate research named HadGEM3-GC3.1 was released in 2016The model was run by the Met Office Hadley Centre, Exeter, Devon, UK (MOHC) in native nominal resolutions: aerosol: 100 km, atmosphere: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km.

HadGEM3-GC31-MM

MOHC (Met Office Hadley Centre)The model used in climate research named HadGEM3-GC3.1-N216ORCA025 was released in 2016.
The model was run by the Met Office Hadley Centre, Exeter, Devon, UK (MOHC) in native nominal resolutions: aerosol: 100 km, atmosphere: 100 km, land: 100 km, ocean: 25 km, seaIce: 25 km.

IITM-ESM

CCCR-IITM (Centre for Climate Change Research, Indian Institute of Tropical Meteorology)The model used in climate research named IITM-ESM was released in 2015.
The model was run by the Centre for Climate Change Research, Indian Institute of Tropical Meteorology Pune, Maharashtra, India (CCCR-IITM) in native nominal resolutions: aerosol: 250 km, atmosphere: 250 km, land: 250 km, ocean: 100 km, ocean biogeochemistry: 100 km, seaIce: 100 km.

INM-CM4-8

INM (Institute of Numerical Mathematics)The model used in climate research named INM-CM4-8 was released in 2016.
The model was run by the Institute for Numerical Mathematics, Russian Academy of Science, Moscow, Russia (INM) in native nominal resolutions: aerosol: 100 km, atmosphere: 100 km, land: 100 km, ocean: 100 km, seaIce: 100 km.

INM-CM5-0

INM (Institute of Numerical Mathematics)The model used in climate research named INM-CM5-0 was released in 2016.
The model was run by the Institute for Numerical Mathematics, Russian Academy of Science, Moscow, Russia (INM) in native nominal resolutions: aerosol: 100 km, atmosphere: 100 km, land: 100 km, ocean: 50 km, seaIce: 50 km.

IPSL-CM6A-LR

IPSL (Institut Pierre‐Simon Laplace)The model used in climate research named IPSL-CM6A-LR was released in 2017.
The model was run by the Institut Pierre Simon Laplace, Paris, France (IPSL) in native nominal resolutions: atmosphere: 250 km, land: 250 km, ocean: 100 km, ocean biogeochemistry: 100 km, seaIce: 100 km.

KACE-1-0-G

NIMS-KMA (National Institute of Meteorological Sciences/Korea Met. Administration)The model used in climate research named KACE1.0-GLOMAP was released in 2018.
The model was run by the National Institute of Meteorological Sciences/Korea Meteorological Administration, Climate Research Division, Seoho-bukro 33, Seogwipo-si, Jejudo 63568, Republic of Korea (NIMS-KMA) in native nominal resolutions: aerosol: 250 km, atmos: 250 km, land: 250 km, ocean: 100 km, seaIce: 100 km.

KIOST-ESM

KIOST (Korea Institute of Ocean Science and Technology)The model used in climate research named KIOST Earth System Model v2 was released in 2018.
The model was run by the Korea Institute of Ocean Science and Technology, Busan, Republic of Korea (KIOST) in native nominal resolutions: atmosphere: 250 km, atmospheric chemistry: 250 km, land: 250 km, landIce: 250 km, ocean: 100 km, ocean biogeochemistry: 100 km, seaIce: 100 km.

MCM-UA-1-0

UA (University of Arizona - Department of Geosciences)R30 spectral atmosphere coupled to MOM1 ocean using simple Manabe land model and simple Bryan sea ice model. RESOLUTION? IT IS NOT VERY CL;EAR WHAT IS MEANT HERE!

MIROC6

MIROC (Atmosphere and Ocean Research Institute (AORI), Centre for Climate System Research - National Institute for Environmental Studies (CCSR-NIES) and Atmosphere and Ocean Research Institute (AORI))MIROC6 is a physical climate model mainly composed of three sub-models: atmosphere, land, and sea ice-ocean. The atmospheric model is based on the CCSR-NIES atmospheric general circulation model. The horizontal resolution is a T85 spectral truncation that is an approximately 1.4° grid interval for both latitude and longitude. The vertical grid coordinate is a hybrid σ-p coordinate. The model top is placed at 0.004 hPa, and there are 81 vertical levels. A coupler system calculates heat and freshwater fluxes between the sub-models in order to ensure that all fluxes are conserved within machine precision and then exchanges the fluxes among the sub-models. No flux adjustments are used in MIROC6.

MIROC-ES2L

MIROC (Atmosphere and Ocean Research Institute (AORI), Centre for Climate System Research - National Institute for Environmental Studies (CCSR-NIES) and Atmosphere and Ocean Research Institute (AORI))MIROC-AGCM is the atmospheric component of a climate model, the Model for Interdisciplinary Research on Climate version 6 (MIROC6). The MIROC-AGCM employs a spectral dynamical core, and standard physical parameterizations for cumulus convections, radiative transfer, cloud microphysics, turbulence, and gravity wave drag. It also has an aerosol module. The model is cooperatively developed by the Japanese modeling community including the Atmosphere and Ocean Research Institute, the University of Tokyo, the Japan Agency for Marine-Earth Science and Technology, and the National Institute for Environmental Studies.

MPI-ESM-1-2-HAM

HAMMOZ-Consortium (Swiss Federal Institute of Technology Zurich (ETH-Zurich), Max Planck Institute for Meteorology (MPI-M), Forschungszentrum Jülich, University of Oxford, Finnish Meteorological Institute (FMI), Leibniz Institute for Tropospheric Research (IfT) and Center for Climate Systems Modeling (C2SM) at ETH Zurich)MPI-ESM1.2-HAM is the latest version of the Max Planck Institute for Meteorology Earth System Model (MPI-ESM1.2) coupled with the Hamburg Aerosol Module (HAM2.3), developed by the HAMMOZ consortium. The HAMMOZ consortium is composed of ETH Zurich, Max Planck Institut for Meteorology, Forschungszentrum Jülich, University of Oxford, the Finnish Meteorological Institute and the Leibniz Institute for Tropospheric Research, and managed by the Center for Climate Systems Modeling (C2SM) at ETH Zurich. RESOLUTION?

MPI-ESM1-2-HR

MPI-M DWD DKRZ (Max Planck Institute for Meteorology (MPI-M), German Meteorological Service (DWD), German Climate Computing Center (DKRZ))The model used in climate research named MPI-ESM1.2-HR was released in 2017.
The model was run by the Max Planck Institute for Meteorology, Hamburg 20146, Germany (MPI-M) in native nominal resolutions: aerosol: 100 km, atmosphere: 100 km, land: 100 km, landIce: none, ocean: 50 km, ocean biogeochemistry: 50 km, seaIce: 50 km.

MPI-ESM1-2-LR

MPI-M AWI (Max Planck Institute for Meteorology (MPI-M), AWI (Alfred Wegener Institute))The model used in climate research named MPI-ESM1.2-LR was released in 2017.
The model was run by the Max Planck Institute for Meteorology, Hamburg 20146, Germany (MPI-M) in native nominal resolutions: aerosol: 250 km, atmosphere: 250 km, land: 250 km, landIce: none, ocean: 250 km, ocean biogeochemistry: 250 km, seaIce: 250 km.

MRI-ESM2-0

MRI (Meteorological Research Institute, Japan)The model used in climate research named MRI-ESM2.0 was released in 2017.
The model was run by the Meteorological Research Institute, Tsukuba, Ibaraki, Japan (MRI) in native nominal resolutions: aerosol: 250 km, atmosphere: 100 km, atmospheric chemistry: 250 km, land: 100 km, ocean: 100 km, ocean biogeochemistry: 100 km, seaIce: 100 km.

NESM3

NUIST (Nanjing University of Information Science and Technology) The model used in climate research named NUIST ESM v3 was released in 2016.
The model was run by the Nanjing University of Information Science and Technology, Nanjing, China (NUIST) in native nominal resolutions: atmosphere: 250 km, land: 2.5 km, ocean: 100 km, seaIce: 100 km.

NorCPM1

NCC (Norwegian Climate Centre)The model used in climate research named Norwegian Climate Prediction Model version 1 was released in 2019.
The model was run by the NorESM Climate modeling Consortium consisting of CICERO (Center for International Climate and Environmental Research, Oslo), MET-Norway (Norwegian Meteorological Institute, Oslo), NERSC (Nansen Environmental and Remote Sensing Center, Bergen), NILU (Norwegian Institute for Air Research, Kjeller), UiB (University of Bergen, Bergen), UiO (University of Oslo, Oslo) and UNI (Uni Research, Bergen), Norway. Mailing address: NCC, c/o MET-Norway, Henrik Mohns plass 1, Oslo 0313, Norway (NCC) in native nominal resolutions: aerosol: 250 km, atmosphere: 250 km, atmospheric chemistry: 250 km, land: 250 km, ocean: 100 km, ocean biogeochemistry: 100 km, seaIce: 100 km.

NorESM1-F

NCC (Norwegian Climate Centre)The model used in climate research named NorESM1-F (a fast version of NorESM that is designed for paleo and multi-ensemble simulations) was released in 2018.
The model was run by the NorESM Climate modeling Consortium consisting of CICERO (Center for International Climate and Environmental Research, Oslo), MET-Norway (Norwegian Meteorological Institute, Oslo), NERSC (Nansen Environmental and Remote Sensing Center, Bergen 5006), NILU (Norwegian Institute for Air Research, Kjeller), UiB (University of Bergen, Bergen), UiO (University of Oslo, Oslo) and UNI (Uni Research, Bergen 5008), Norway. Mailing address: NCC, c/o MET-Norway, Henrik Mohns plass 1, Oslo 0313, Norway (NCC) in native nominal resolutions: atmosphere: 250 km, land: 250 km, landIce: 250 km, ocean: 100 km, ocean biogeochemistry: 100 km, seaIce: 100 km.

NorESM2-LM

NCC (Norwegian Climate Centre)The model used in climate research named NorESM2-LM (low atmosphere-medium ocean resolution, GHG concentration driven) was released in 2017.
The model was run by the NorESM Climate modeling Consortium consisting of CICERO (Center for International Climate and Environmental Research, Oslo), MET-Norway (Norwegian Meteorological Institute, Oslo), NERSC (Nansen Environmental and Remote Sensing Center, Bergen), NILU (Norwegian Institute for Air Research, Kjeller), UiB (University of Bergen, Bergen), UiO (University of Oslo, Oslo) and UNI (Uni Research, Bergen), Norway. Mailing address: NCC, c/o MET-Norway, Henrik Mohns plass 1, Oslo 0313, Norway (NCC) in native nominal resolutions: aerosol: 250 km, atmospheric: 250 km, atmospheric chemistry: 250 km, land: 250 km, landIce: 250 km, ocean: 100 km, ocean biogeochemistry: 100 km, seaIce: 100 km.

NorESM2-MM

NCC (Norwegian Climate Centre)The model used in climate research named NorESM2-MM (medium atmosphere-medium ocean resolution, GHG concentration driven) was released in 2017.
The model was run by the NorESM Climate modeling Consortium consisting of CICERO (Center for International Climate and Environmental Research, Oslo), MET-Norway (Norwegian Meteorological Institute, Oslo), NERSC (Nansen Environmental and Remote Sensing Center, Bergen), NILU (Norwegian Institute for Air Research, Kjeller), UiB (University of Bergen, Bergen), UiO (University of Oslo, Oslo) and UNI (Uni Research, Bergen), Norway. Mailing address: NCC, c/o MET-Norway, Henrik Mohns plass 1, Oslo 0313, Norway (NCC) in native nominal resolutions: aerosol: 100 km, atmosphere: 100 km, atmospheric chemistry: 100 km, land: 100 km, landIce: 100 km, ocean: 100 km, ocean biogeochemistry: 100 km, seaIce: 100 km.

SAM0-UNICON

SNU (Seoul National University)

The atmospheric component of SEM0 is the Seoul National University Atmospheric Model Version 0 with a Unified Convection Scheme (SAM0-UNICON, Park et al. 2019, Park 2014a,b), which replaces CAM5's shallow and deep convection schemes and revises CAM5's cloud microphysics scheme (Park et al. 2017). The other components of SEM0 (i.e., ocean, land, land-ice, sea-ice, and coupler) are identical to those of the Community Earth System Model version 1.2 (CESM1.2). RESOLUTION?

TaiESM1

AS-RCEC (Research Center for Environmental Changes)The model used in climate research named Taiwan Earth System Model 1.0 was released in 2018.
The model was run by the Research Center for Environmental Changes, Academia Sinica, Nankang, Taipei, Taiwan (AS-RCEC) in native nominal resolutions: aerosol: 100 km, atmosphere: 100 km, atmospheric chemistry: 100 km, land: 100 km, ocean: 100 km, seaIce: 50 km.

UKESM1-0-LL

MOHC, NERC, NIMS-KMA, NIWA  (Met Office Hadley Centre, Natural Environmental Research Council,  National Institute of Meteorological Science / Korean Meteorological Administration (NIMS-KMA), National Institute of Weather and Atmospheric Research (NIWA)) The model used in climate research named UKESM1.0-N96ORCA1 was released in 2018.
The model was run by the Met Office Hadley Centre, Exeter, Devon, UK (MOHC) in native nominal resolutions: aerosol: 250 km, atmosphere: 250 km, atmospheric chemistry: 250 km, land: 250 km, ocean: 100 km, ocean biogeochemistry: 100 km, seaIce: 100 km.


Grids

CMIP6 data is reported either on the model’s native grid or re-gridded to one or more target grids with data variables generally provided near the center of each grid cell (rather than at the boundaries).  For CMIP6 there is a requirement to record both the native grid of the model and the grid of its output (archived in the CMIP6 repository) as a “nominal_resolution”.  The "nominal_resolution” enables users to identify which models are relatively high resolution and have data that might be challenging to download and store locally. HOW THE USERS WILL KNOW WHAT GRID IS USED FOR THE GIVEN MODEL?

Pressure levels

For pressure level data the model output is available on the pressure levels according to the table below. Note that since the model output is standardised all models produce the data on the same pressure levels. I SAW WE WILL HAVE ALSO 3-HOURLY DATA, THEY ALL WILL BE SINGLE LEVEL FIELDS?

...