Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Code Block
languagebash
titleSet up the python local environment and install required packages
collapsetrue
# create a local virtual environment, you can call it as you wish, here 'myenv' is used.
conda create -n myenv python=3.8 

# add repository channel
conda config --add channels conda-forge

# activate the local environment. 
conda activate myenv

# install the required packages
conda install -c conda-forge/label/main xarray cfgrib eccodes 
conda install cartopy netcdf4 matplotlib

# installand the cdsapi
pip install cdsapi

...

Code Block
languagepy
titleSoil Wetness Index Map
collapsetrue
import xarray as xr
from matplotlib.pyplot import colorbar
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cf
import numpy as np
import pandas as pd

# helper function
def make_cmap(colors, position=None):
    '''
    make_cmap takes a list of tuples which contain RGB values. 
    The RGB values  Load the wilting point and field capacity datasets
thmin1 = xr.open_dataset('thmin1.nc')
thmin2 = xr.open_dataset('thmin2.nc')
thmin3 = xr.open_dataset('thmin3.nc')
thmax1 = xr.open_dataset('thmax1.nc')
thmax2 = xr.open_dataset('thmax2.nc')
thmax3 = xr.open_dataset('thmax3.nc')

# load the EFAS volumetric soil moisture dataset
ds = xr.open_dataset('eud_2019013000.nc')


# plotting function
def make_cmap(colors, position=None):
    '''
    make_cmap takes a list of tuples which contain RGB values. 
    The RGB values are [0 to 255] 
    make_cmap returns a cmap with equally spaced colors.
    Arrange your tuples so that the first color is the lowest value for the
    colorbar and the last is the highest.
    position contains values from 0 to 1 to dictate the location of each color.
    '''
    import matplotlib as mpl
    import numpy as np
    import sys
    bit_rgb = np.linspace(0,1,256)
    if position == None:
        position = np.linspace(0,1,len(colors))
    else:
        if len(position) != len(colors):
            sys.exit("position length must be the same as colors")
        elif position[0] != 0 or position[-1] != 1:
            sys.exit("position must start with 0 and end with 1")
    for i in range(len(colors)):
        colors[i] = (bit_rgb[colors[i][0]],
                     bit_rgb[colors[i][1]],
                     bit_rgb[colors[i][2]])
    cdict = {'red':[], 'green':[], 'blue':[]}
    for pos, color in zip(position, colors):
        cdict['red'].append((pos, color[0], color[0]))
        cdict['green'].append((pos, color[1], color[1]))
        cdict['blue'].append((pos, color[2], color[2]))

    cmap = mpl.colors.LinearSegmentedColormap('my_colormap',cdict,256)
    return cmap


thmin1 = xr.open_dataset('thmin1.nc')
thmin2 = xr.open_dataset('thmin2.nc')
thmin3 = xr.open_dataset('thmin3.nc')
thmax1 = xr.open_dataset('thmax1.nc')
thmax2 = xr.open_dataset('thmax2.nc')
thmax3 = xr.open_dataset('thmax3.nc')
ds = xr.open_dataset('eud_2019013000.nc')

# There are 3 layers of Volumetric Soil Moisture. We need to get the mean across all timesteps
mean_vsw = ds.vsw.mean('step') # Mean Volumetric Soil Moisture for all time steps
th1 = mean_vsw[0,:,:]          # Mean Volumetric Soil Moisture for Layer 1
th2 = mean_vsw[1,:,:]          # Mean Volumetric Soil Moisture for Layer 2

sd1 = ds.sod[0,0,:,:].values
sd2 = ds.sod[0,1,:,:].values - ds.sod[0,0,:,:].values

data=(thmin1.wiltingpoint.values * sd1 + thmin2.wiltingpoint.values * sd2)/(sd1 + sd2)
thmin = xr.DataArray(data,dims=(ds.y.name,ds.x.name),name='thmin')
ds['thmin'] = thmin

data=(thmax2.fieldcapacity.values * sd1 + thmax2.fieldcapacity.values * sd2)/(sd1 + sd2)
thmax = xr.DataArray(data,dims=(ds.y.name,ds.x.name),name='thmax')
ds['thmax'] = thmax

data=((th1 * sd1) + (th2 * sd2))/(sd1 +sd2)
smtot = xr.DataArray(data,dims=(ds.y.name,ds.x.name),name='smtot')
ds['smtot'] = smtot 

data=(((smtot - thmin)/(thmax - thmin)))
SM = xr.DataArray(data,dims=(ds.y.name,ds.x.name),name='SM')
ds['SM'] = SM




colors = [(64,0,3), (133,8,3), (249,0,0), (250,106,0), (249,210,0), (189,248,255), (92,138,255), (0,98,255), (0,0,255), (0,0,88)]
### Create an array or list of positions from 0 to 1.
position = [0, 0.2, 0.3,0.4,0.5,0.6,0.7,0.8,0.9,1]

cmap = make_cmap(colors, position=position)

crs = ccrs.LambertAzimuthalEqualArea(central_longitude=10,central_latitude=52,false_easting=4321000,false_northing=3210000)

fig, ax = plt.subplots(1,1,subplot_kw={'projection': crs}, figsize=(15,15) )
ax.gridlines(crs=crs, linestyle="-")
ax.coastlines()
ax.add_feature(cf.BORDERS)
sc = ds["SM"].plot(ax=ax,cmap=cmap,add_colorbar=False)
cbar = plt.colorbar(sc, shrink=.5,)
cbar.set_label("SM")

...