Important information on CEMS Data Access via CDS

ECMWF has implemented a new state-of-the-art data access infrastructure to host the Climate and Atmospheric Data Stores (CDS and ADS, respectively). All layers of the infrastructure are being modernised: the front-end web interface, the back-end software engine, and the underlying cloud infrastructure hosting the service and core data repositories.

As part of this development, a new data store for the Copernicus Emergency Management Service (CEMS) has been created. The CEMS Early Warning Data Store (EWDS) will host all the historical and forecast information for floods and forest fires at European and Global levels. Users are encouraged to migrate their accounts and scripts to the new EWDS Beta before 26 September 2024, when the system will become operational.

For more information, Please read: CEMS Early Warning Data Store (EWDS) coming soon!


Warning

Updates to the EWDS documentation are ongoing as the implementation takes place. Scripts and examples on this page are under review and may not be fully functional yet for the EWDS, so please be patient.

Please send your feedback and/or report any issue/bug you may have encountered while using the new CDS/ADS/EWDS infrastructure by raising an enquiry ticket through our dedicated  Support Portal (ECMWF login required) - make sure you select "Yes" to the question Is this request related to CDS-beta/ADS-beta/CEMS-EW-beta? on the Support Portal request form - this will help the Support team with triaging enquiries more efficiently.


Set up the Python environment

Activate the conda environment and install the additional Phython package

install required packages
# activate the local environment. 
conda activate myenv

# install the required packages
conda install cartopy matplotlib

# and the cdsapi
pip install cdsapi

Visualize EFAS products

Retrieve data

These exercises require EFAS model output parameters and auxiliary data. You can retrieve them using the EWDS API, as described in the code blocks below:

Model outputs

Historical river discharge
import cdsapi
 
c = cdsapi.Client()
DATASET='efas-historical'
request = {
      "hday": ["15","16","17","18"],
      "hmonth": "11",
      "hyear": "2020",
      "model_levels": "surface_level",
      "system_version": "version_5_0",
      "time": ["00:00","06:00","18:00"],
      "variable": "river_discharge_in_the_last_6_hours",
      "data_format": "netcdf",
      "download_format": "unarchived"
}
c.retrieve(DATASET,request).download('clim_2020111500.nc')
Forecast river discharge
import cdsapi
 
c = cdsapi.Client()
DATASET = 'efas-forecast'
REQUEST = {
        'originating_centre': 'ecmwf',
        'product_type': 'ensemble_perturbed_forecasts',
        'variable': 'river_discharge_in_the_last_6_hours',
        'model_levels': 'surface_level',
        'year': '2020',
        'month': '11',
        'day': '15',
        'time': '00:00',
        'leadtime_hour': [
            '6', '12', '18',
            '24', '30', '36',
            '42', '48', '54',
            '60', '66', '72',
        ],
        "data_format": "netcdf",
        "download_format": "unarchived"
    }
c.retrieve(DATASET,REQUEST).download('eue_2020111500.nc')
Forecast volumetric soil moisture and soil depth
import cdsapi
 
c = cdsapi.Client()    

DATASET='efas-forecast'
REQUEST={
        'originating_centre': 'ecmwf',
        'product_type': 'high_resolution_forecast',
        'variable': [
            'volumetric_soil_moisture'
        ],
        'model_levels': 'soil_levels',
        'year': '2019',
        'month': '01',
        'day': '30',
        'time': '00:00',
        'leadtime_hour': [
            '6', '12', '18',
            '24', '30', '36',
            '42', '48', '54',
            '60', '66', '72',
        ],
        'soil_level': [
            '1', '2', '3',
        ],
        'data_format':'netcdf',
        'download_format':'unarchived'
}
c.retrieve(DATASET,REQUEST).download('eud_2019013000.nc')
Forecast snow depth water equivalent
import cdsapi
 
c = cdsapi.Client()      
 
# forecast snow depth water equivalent
DATASET='efas-forecast'
REQUEST={
        'format': 'netcdf',
        'originating_centre': 'ecmwf',
        'variable': 'snow_depth_water_equivalent',
        'product_type': 'control_forecast',
        'model_levels': 'surface_level',
        'year': '2021',
        'month': '01',
        'day': '30',
        'time': '00:00',
        'leadtime_hour': [
            '6', '12', '18',
            '24', '30', '36',
            '42', '48', '54',
            '60', '66', '72',
            '78', '84', '90',
            '96', '102',
        ],
        'data_format':'netcdf',
        'download_format':'unarchived'
    }
c.retrieve(DATASET,REQUEST).download('esd_2021013000.nc')

Auxiliary data

One can download the auxiliary data by simplying requesting the data through a CDS API request.

Note that area sub-selection is not currently possible for the auxiliary (or time-invariant) data. Therefore any 'area' included in the CDS API request will be ignored and the data downloaded will cover the full EFAS domain.

Retrieving a single auxiliary file
import cdsapi
 
c = cdsapi.Client()
 
dataset = "efas-forecast"
request = {
    "system_version": ["operational"],
    "variable": ["elevation_v5_0"],
    "model_levels": "surface_level",
    "data_format": "netcdf",
    "download_format": "zip"
}

client = cdsapi.Client()
client.retrieve(dataset, request).download('upstream_area_v5_0.nc')


Retrieve multiple auxiliary files
import cdsapi

dataset = "efas-forecast"
request = {
    "variable": [
        "soil_depth_v5_0",
        "field_capacity_v5_0",
        "wilting_point_v5_0"
    ],
    "model_levels": "soil_levels",
    "soil_level": ["2"],
    "data_format": "netcdf",
    "download_format": "zip"
}

client = cdsapi.Client()
client.retrieve(dataset, request).download('auxiliary.zip')

And then unzip the auxiliary.zip

unzip
$ unzip auxiliary.zip

Archive:  auxiliary.zip
 extracting: sd_2_4.0.nc
 extracting: thmax_2_4.0.nc
 extracting: thmin_2_4.0.nc


Plot map discharge

Discharge map
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cf
import xarray as xr

var_name = "dis06"

# Open the dataset (assuming it's already in WGS84)
ds = xr.open_dataset('./clim_2020111500.nc')
print(ds)
cmap = plt.cm.get_cmap('jet').copy()
cmap.set_under('white')

# Using the default PlateCarree projection (WGS84)
crs = ccrs.PlateCarree()

# Set filter for visualizing only discharge above a threshold
vmin = 20

# Select the variable at a specific time step
ds = ds[var_name].isel(valid_time=1)

# Plot map discharge > 20 m³/s
fig, ax = plt.subplots(1, 1, subplot_kw={'projection': crs}, figsize=(20, 20))
ax.gridlines(crs=crs, linestyle="-")
ax.coastlines()
ax.add_feature(cf.BORDERS)
sc = ds.plot(ax=ax, cmap=cmap, vmin=vmin, add_colorbar=False)
ax.set_title(f'{ds.long_name} > {vmin} $m^3/s$')
cbar = plt.colorbar(sc, shrink=.5)
cbar.set_label(ds.GRIB_name)

plt.show()



Plot Soil Wetness Index Map

  • The Soil Wetness Index is provided by EFAS starting from 30/05/2024, so we won't need to calculate it after that date. However, for data before that date, we will need to calculate the Soil Wetness Index using the following script. Please note that this process may require a significant amount of memory and time.


Soil Wetness Index Map
import xarray as xr
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cf
import numpy as np

# Load the wilting point ,field capacity and soil depth datasets
thmin1 = xr.open_dataset('./thmin_1_5.0.nc')
thmin2 = xr.open_dataset('./thmin_2_5.0.nc')
thmin3 = xr.open_dataset('./thmin_3_5.0.nc')
thmax1 = xr.open_dataset('./thmax_1_5.0.nc')
thmax2 = xr.open_dataset('./thmax_2_5.0.nc')
thmax3 = xr.open_dataset('./thmax_3_5.0.nc')
sd1 = xr.open_dataset('./sd_1_5.0.nc')
sd2 = xr.open_dataset('./sd_2_5.0.nc')
sd3 = xr.open_dataset('./sd_3_5.0.nc')

# load the EFAS volumetric soil moisture dataset
ds = xr.open_dataset('./eud_2019013000.nc')

# Create a custom color map function
def make_cmap(colors, position=None):
    import matplotlib as mpl
    if position is None:
        position = np.linspace(0, 1, len(colors))
    cdict = {'red': [], 'green': [], 'blue': []}
    for pos, color in zip(position, colors):
        cdict['red'].append((pos, color[0]/255, color[0]/255))
        cdict['green'].append((pos, color[1]/255, color[1]/255))
        cdict['blue'].append((pos, color[2]/255, color[2]/255))
    return mpl.colors.LinearSegmentedColormap('custom_cmap', cdict)

# Calculate the mean volumetric soil moisture across all steps and layers
mean_vsw = ds.vsw.mean(dim='step')
th1 = mean_vsw.sel(soilLayer=1)
th2 = mean_vsw.sel(soilLayer=2)

# Retrieve soil depth values (assuming the values are stored correctly)
sd1_vals = sd1.soil_depth_1
sd2_vals = sd2.soil_depth_2

# Compute wilting point and field capacity
thmin = (thmin1.wilting_point_1 * sd1_vals + thmin2.wilting_point_2 * sd2_vals) / (sd1_vals + sd2_vals)
thmax = (thmax1.field_capacity_1 * sd1_vals + thmax2.field_capacity_2 * sd2_vals) / (sd1_vals + sd2_vals)

# Compute total soil moisture across layers
smtot = (th1 * sd1_vals + th2 * sd2_vals) / (sd1_vals + sd2_vals)

# Compute the Soil Wetness Index
SM = ((smtot - thmin) / (thmax - thmin))

ds['SM'] = SM

# Define the custom colormap
colors = [(64, 0, 3), (133, 8, 3), (249, 0, 0), (250, 106, 0), (249, 210, 0),
          (189, 248, 255), (92, 138, 255), (0, 98, 255), (0, 0, 255), (0, 0, 88)]
position = [0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
cmap = make_cmap(colors, position)

# Use PlateCarree projection (WGS84)
crs = ccrs.PlateCarree()

# Plot the Soil Wetness Index
fig, ax = plt.subplots(1, 1, subplot_kw={'projection': crs}, figsize=(15, 15))
ax.gridlines(crs=crs, linestyle="-")
ax.coastlines()
ax.add_feature(cf.BORDERS)

# Plot the soil wetness index
sc = ds['SM'].plot(ax=ax, cmap=cmap, add_colorbar=False)
cbar = plt.colorbar(sc, shrink=0.5)
cbar.set_label("Soil Wetness Index")

plt.show()



  • Plot Soil Wetness Index provided by EFAS


Soil Wetness Index
import xarray as xr
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cf
import numpy as np

ds = xr.open_dataset('./Soil-Wetness-Index.nc')
print(ds)

def make_cmap(colors, position=None):
    import matplotlib as mpl
    if position is None:
        position = np.linspace(0, 1, len(colors))
    cdict = {'red': [], 'green': [], 'blue': []}
    for pos, color in zip(position, colors):
        cdict['red'].append((pos, color[0]/255, color[0]/255))
        cdict['green'].append((pos, color[1]/255, color[1]/255))
        cdict['blue'].append((pos, color[2]/255, color[2]/255))
    return mpl.colors.LinearSegmentedColormap('custom_cmap', cdict)


# Define the custom colormap
colors = [(64, 0, 3), (133, 8, 3), (249, 0, 0), (250, 106, 0), (249, 210, 0),
          (189, 248, 255), (92, 138, 255), (0, 98, 255), (0, 0, 255), (0, 0, 88)]
position = [0, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1]
cmap = make_cmap(colors, position)

# Use PlateCarree projection (WGS84)
crs = ccrs.PlateCarree()

# Plot the Soil Wetness Index
fig, ax = plt.subplots(1, 1, subplot_kw={'projection': crs}, figsize=(15, 15))
ax.gridlines(crs=crs, linestyle="-")
ax.coastlines()
ax.add_feature(cf.BORDERS)

sc = ds['swir'].plot(ax=ax, cmap=cmap, add_colorbar=False)
cbar = plt.colorbar(sc, shrink=0.5)
cbar.set_label("Soil Wetness Index")

plt.show()

Plot Snow depth water equivalent map

Snow Depth Water Equivalent
import xarray as xr
ds = xr.open_dataset('./esd_2021013000.nc')

ds.sd.plot(col="step",col_wrap=4, robust=True)
 

Visualize GloFAS products

Also for this exercise, we are going to retrieve data from the EWDS API, as described in the code blocks below:

Retrieve data

The script shows how to retrieve the control reforecasts product from 2003 to 2022, relative to the reference year 2023, for two station coordinates, one on the river network of the Thames and the other one on the Po river.

 It's not possible to download only one cell of data , we have to provide and area .In the following script we are adding 0.05 degree to the station coordinates to get the surrounding area of the station . And for a correct interpretation of the data it's better to compare the uparea of the station with the uparea file provided .

Retrieve ~20 years of reforecasts for two locations
import cdsapi
from datetime import datetime, timedelta

def get_monthsdays():
    start, end = datetime(2023, 3, 27), datetime(2023,12, 31) # reference year 2024
    days = [start + timedelta(days=i) for i in range((end - start).days + 1)]
    monthday = [d.strftime("%m-%d").split("-") for d in days if d.weekday() in [0, 3]]
    return monthday

if __name__ == '__main__':
    c = cdsapi.Client()
    # set station coordinates (lat,lon)
    COORDS = {
        "Thames": [51.35, -0.45],
        "Po": [44.85, 11.65]
    }

    adjustment = 0.05
    bbox_dict = {}
    for station, (lat, lon) in COORDS.items():
        bbox = [
            lat + adjustment,  # North (Latitude + adjustment)
            lon - adjustment,  # West (Longitude - adjustment)
            lat - adjustment,  # South (Latitude - adjustment)
            lon + adjustment   # East (Longitude + adjustment)
        ]
        bbox_dict[station] = bbox
    DATASET='cems-glofas-reforecast'
    # select date index corresponding to the event 
    MONTHSDAYS = get_monthsdays()
    
    YEARS  = ['%d'%(y) for y in range(2003,2023)] 
    
    LEADTIMES = ['%d'%(l) for l in range(24,1104,24)]
    
    # loop over date index (just 1 in this case)
    for md in MONTHSDAYS:
        
        month = md[0].lower()
        day = md[1]
        
        # loop over station coordinates
        for station, bbox in bbox_dict.items():
            print(bbox)
            REQUEST= {
                            'system_version': ["version_4_0"],
                            'variable': 'river_discharge_in_the_last_24_hours',
                            'hydrological_model': 'lisflood',
                            'product_type': 'control_reforecast',
                            'area': bbox,
                            'hyear': YEARS,
                            'hmonth': month,
                            'hday': day,
                            'leadtime_hour': LEADTIMES,
                            'data_format': "grib2",
                            'download_format': "zip"
                             }
            c.retrieve(DATASET, REQUEST).download(f'{DATASET}_{station}_{month}_{day}.zip')

This second script shows how to retrieve a point time series reforecast on the river Thames for a single forecast reference time, specifically the 11th of July 2007.

Retrieve reforecast flood event on the Thames in July 2007
import cdsapi
from datetime import datetime, timedelta

if __name__ == '__main__':
    c = cdsapi.Client()
    COORDS = {
        "Thames": [51.35, -0.45],
    }
    adjustment = 0.05
    bbox_dict = {}
    for station, (lat, lon) in COORDS.items():
        bbox = [
            lat + adjustment,  # North (Latitude + adjustment)
            lon - adjustment,  # West (Longitude - adjustment)
            lat - adjustment,  # South (Latitude - adjustment)
            lon + adjustment   # East (Longitude + adjustment)
        ]
        bbox_dict[station] = bbox
    YEAR  = '2007'
    MONTH='03'
    DAY='27'
    LEADTIMES = ['%d'%(l) for l in range(24,1128,24)]
    # loop over station coordinates
    for station, bbox in bbox_dict.items():
            DATASET='cems-glofas-reforecast'
            REQUEST={
                    'system_version': ["version_4_0"],
                    'variable': 'river_discharge_in_the_last_24_hours',
                    'hydrological_model': 'lisflood',
                    'product_type': [
                                "ensemble_perturbed_reforecast",
                                "control_reforecast"
                            ],
                    'area': bbox,
                    'hyear': YEAR,
                    'hmonth': MONTH,
                    'hday': DAY,
                    'leadtime_hour': LEADTIMES,
                    'data_format': "grib2",
                    'download_format': "zip"
                }
            c.retrieve(DATASET, REQUEST).download(f'{DATASET}_{station}_{YEAR}_{MONTH}_{DAY}.zip')

Plot ~20 years of reforecast time series from point coordinates

import xarray as xr
import numpy as np
import matplotlib.pyplot as plt

YEARS = range(2004,2024)

ds = xr.open_dataset("glofas_reforecast_Po_january_03.grib",engine="cfgrib")
da = ds.sel(latitude=44.8962,longitude=11.64, method='nearest').dis24
print(da)

n = len(YEARS) 
colors = plt.cm.jet(np.linspace(0,1,n))
ls = ["-","--",":"]

fig,ax = plt.subplots(1,1,figsize=(16,8))

steps = list(range(24,da.shape[1]*24+24,24))

for i,year in enumerate(YEARS):
    y = da.sel(time=f"{year}-01-01").values
    ax.plot(steps,y,label=f"{year}-01-01",color=colors[i],ls=ls[i%3])
    plt.legend(bbox_to_anchor=(0.9,-0.1),ncol=7)

ax.set_xlim([0,steps[-1]])
ax.set_xlabel("leadtime hours")
ax.set_ylabel("m**3 s**-1")

plt.title(f"Po river discharge at ({float(da.latitude.values):.2f}, {float(da.longitude.values):.2f})")

Plot reforecast ensemble members' time series for a historic flood event

In July 2007, a series of flooding events hit the UK, in particular in some areas of the upper Thames catchment. Up to 120 mm of rain fell between the 19th and 20th of July.

Plot
import xarray as xr
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from datetime import datetime,timedelta

forecast_reference_time = datetime(2007,7,11)

# read perturbed ensembles (dataType:pf)
ds = xr.open_dataset("glofas_reforecast_Thames_july_11.grib",engine="cfgrib",backend_kwargs={'filter_by_keys':{'dataType': 'pf'}})
da = ds.sel(latitude=51.3969,longitude=-0.4017, method='nearest').dis24

# read control (dataType:cf)
cds = xr.open_dataset("glofas_reforecast_Thames_july_11.grib",engine="cfgrib",backend_kwargs={'filter_by_keys':{'dataType': 'cf'}})
cda = cds.sel(latitude=51.3969,longitude=-0.4017, method='nearest').dis24

start = forecast_reference_time
end = start + timedelta(45)
time = pd.date_range(start,end)

# plotting parameters
ls = ["-","--",":"]
locator = mdates.AutoDateLocator(minticks=2, maxticks=46)
formatter = mdates.DateFormatter("%b-%d")

# plot

fig,ax = plt.subplots(1,1,figsize=(16,8))
ax.plot(time,cda.values,label=f"control",color="red")
for i,number in enumerate(range(0,10)):
    y = da.isel(number=number).values
    ax.plot(time,y,label=f"ensemble {number}",color=colors[i],ls=ls[i%3])
    plt.legend(bbox_to_anchor=(1,1),ncol=2)

ax.axvspan(datetime(2007,7,19), datetime(2007,7,21), alpha=0.3, color='blue') # highlight event
ax.set_xlabel("date")
ax.set_ylabel("m**3 s**-1")
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(formatter)
ax.set_xlim([time[0],time[-1]])
plt.annotate("peak\nrainfall\nevent",(datetime(2007,7,19,3),85),rotation=0)
plt.xticks(rotation=70)
plt.title(f"Forecast reference time: 11-07-2007 - Thames river discharge at {float(da.latitude.values),round(float(da.longitude.values-360),2)}")