...
| Info | ||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
One can download the auxiliary data by simplying requesting the data through a CDS API request. Using the API request shown on the CDS data download form, it is possible to request one variable at a time
Note that area sub-selection is not currently possible for the auxiliary (or time-invariant) data. Therefore any 'area' included in the CDS API request will be ignored and the data downloaded will cover the full EFAS domain. And then unzip the auxiliary.zip
|
Plot map discharge
| Code Block | ||||||
|---|---|---|---|---|---|---|
| ||||||
import matplotlib.pyplot as plt
import cartopy.crs as ccrs
import cartopy.feature as cf
import numpy as np
import pandas as pd
import xarray as xr
var_name = "dis06"
ds = xr.open_dataset('./clim_2020111500.nc')
cmap = plt.cm.get_cmap('jet').copy()
cmap.set_under('white')
# set the coordinate reference system for EFAS
crs = ccrs.LambertAzimuthalEqualArea(central_longitude=10,central_latitude=52,false_easting=4321000,false_northing=3210000)
# define the filter for visualizing only discharge above that value
vmin = 20
# selecting a date
ds = ds[var_name].isel(time=1)
# Plot map discharge > 20 m/s
fig, ax = plt.subplots(1,1,subplot_kw={'projection': crs}, figsize=(20,20) )
ax.gridlines(crs=crs, linestyle="-")
ax.coastlines()
ax.add_feature(cf.BORDERS)
sc = ds[var_name].plot(ax=ax,cmap=cmap,vmin=vmin,add_colorbar=False)
ax.set_title(f'{ds[var_name].long_name}> {vmin} $m^{3}s^{-1}$')
cbar = plt.colorbar(sc, shrink=.5,)
cbar.set_label(ds[var_name].GRIB_name) |
...