Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

Model

Global Atmosphere 6.0 (GA6): The Unified Model version 8.6 (UM; Williams et al. 2015; Walters et al. 2017). 

Global Land 6.0 (GL6): Joint UK Land Environment Simulator (JULES; Best et al. 2011; Walters et al. 2017)

Horizontal resolution and gridN216 (~60km in the mid-latitudes)
Atmosphere vertical resolution85 levels
Top of atmosphere85 km
Soil levelsFour soil levels
Time step

...


HindcastForecast
Atmosphere initialization
ERA-Interim (Dee et al. 2011) or  ACCESS-G3, the Bureau’s 4D-Var analysis (Bureau of Meteorology 2019a2019)
Atmosphere IC perturbationsSee Hudson et al 2017See Hudson et al 2017

Land Initialization

Climatological fields with weakly coupled data assimilationClimatological fields with weakly coupled data assimilation
Land IC perturbationsNoneNone
Soil moisture initializationClimatological fields with weakly coupled data assimilationClimatological fields with weakly coupled data assimilation
Snow initialization

Unperturbed control forecast?NoneNone

Data assimilation method for control analysis: 

...


HindcastForecast
Ocean initializationEN4Bureau realtime ocean data assimilation (Wedd et al 2022
Ocean IC perturbationsNoNone
Unperturbed control forecast?NoNone

Detailed documentation:

 

5. Model Uncertainties perturbations:

Model dynamics perturbationsNone
Model physics perturbationsNone

If there is a control forecast, is it perturbed?

No control

Detailed documentation: 

6. Forecast system and hindcasts

Forecast frequencyDaily 
Forecast ensemble size

11 per day out to 6 months

22 per day out to 6 weeks

Hindcast yearsSeptember 1981- December 2018
Hindcast ensemble size

27-member time-lagged ensemble:

3 per start date out to 9 months back 9 days,

6 per start date out to 6 weeks back 3 days

On-the-fly or static hindcast set?Static
Calibration (bias correction) periodSeptember 1981- December 2018

7. Other relevant information

...

8. Where to find more information

ACCESS-S system:

Hudson, D., Alves, O., Hendon, H.H., Lim, E., Liu, G., Luo J.-J., MacLachlan, C., Marshall, A.G., Shi, L., Wang, G., Wedd, R., Young, G., Zhao, M., Zhou X., 2017: ACCESS-S1: The new Bureau of Meteorology multi-week to seasonal prediction system. Journal of Southern Hemisphere Earth Systems Science, 67:3 132-159 doi: 10.22499/3.6703.001.

Wedd R., Alves O., de Burgh-Day C., Down C., Griffiths M., Hendon H.H., Hudson D., Li S., Lim E., Marshall A.G., Shi L., Smith P., Smith G., Spillman C.M., Wang G., Wheeler M.C., Yan H., Yin Y., Young G., Zhao M., Yi X. and Zhou X., 2022: ACCESS-S2: The upgraded Bureau of Meteorology multi-week to seasonal prediction system. Journal of Southern Hemisphere Earth System Science, 72 (3), 218-242.

Post-processing:

Griffiths M, Smith P, Yan H, Spillman C, Young G, Hudson D, 2023 ACCESS-S2: Updates and improvements to postprocessing pipeline Bureau Research Report, No. 082, Bureau of Meteorology Australia.

Other selected papers:

King AD, Hudson D, Lim, E-P, Marshall AG, Hendon HH, Lane TP, Alves O. 2020: Sub-seasonal to seasonal prediction of rainfall extremes in Australia. Quarterly Journal of the Royal Meteorological Society, https://doi.org/10.1002/qj.3789.

Lim E, Hudson DA, Wheeler M et al, 2021: Why Australia was Not Wet during Spring 2020 despite La Niña. Scientific Reports. https://www.nature.com/articles/s41598-021-97690-w

Lim E, Hendon HH and co-authors, 2021: The 2019 Southern Hemisphere polar stratospheric warming and its impacts. Bulletin of the American Meteorological Society, https://doi.org/10.1175/BAMS-D-20-0112.1

Marshall AG, Gregory PA, de Burgh-Day CO, and Griffiths M, 2021: Subseasonal drivers of extreme fire weather in Australia and its prediction in ACCESS-S1 during spring and summer. Climate Dynamics. https://doi.org/10.1007/s00382-021-05920-8

Marshall AG, Wang G, Hendon HH and others (2023) Madden–Julian Oscillation teleconnections to Australian springtime temperature extremes and their prediction in ACCESS-S1. Climate Dynamics 61, 431–447. https://doi.org/10.1007/s00382-022-06586-6

Smith GA and Spillman CM (2024) Global ocean surface and subsurface temperature forecast skill over subseasonal to seasonal timescales. Journal of Southern Hemisphere Earth Systems Science, https://doi.org/10.1071/ES23020.

Spillman CM and Smith GA, 2021: A New Operational Seasonal Thermal Stress Prediction Tool for Coral Reefs Around Australia. Frontiers in Marine Science, https://doi.org/10.3389/fmars.2021.687833.