The following definitions should be used
Mean error
| Mathdisplay |
|---|
M = \frac{1}{MS_w} \sum_{i=1}^n w_i (x_f - x_v)_i |
where the sum of the weights
| Mathdisplay |
|---|
MS_w = \sum_{i=1}^n w_i |
Root mean square (rms) error
| Mathdisplay |
|---|
rms = \sqrt {\frac{1}{MS_w} \sum_{i=1}^n w_i (x_f - x_v)_i^2 } |
...
| Mathdisplay |
|---|
rms = \sqrt {\frac{1}{MS_w} \sum_{i=1}^n w_i (\vec{V}_f - \vec{V}_v)_i^2 } |
...
| Mathdisplay |
|---|
MAE = \frac{1}{MS_w} \sum_{i=1}^n w_i | x_f - x_v |_i |
...
| Mathdisplay |
|---|
rmsa = \sqrt {\frac{1}{MS_w} \sum_{i=1}^n w_i (x - x_c)_i^2 } |
...
| Mathdisplay |
|---|
M_x = \frac{1}{MS_w} \sum_{i=1}^n w_i x_i |
S1 score
| Mathdisplay |
|---|
S_1S1 = 100 \frac{\sum_{i=1}^n w_i (e_g)_i}{\sum_{i=1}^n w_i (G_L)_i} |
...
| Mathdisplay |
|---|
e_g = \left ( \left | \frac{\partial}{\partial x}(x_f-x_v)\right | + \left | \frac{\partial}{\partial y}(x_f-x_v)\right | \right ) |
| Mathdisplay |
|---|
G_L = \max \left ( \left | \frac{\partial x_f}{\partial x}\right | , \left | \frac{\partial x_v}{\partial x}\right | \right) + \max \left ( \left | \frac{\partial x_f}{\partial y}\right | , \left | \frac{\partial x_v}{\partial y}\right | \right) |
...