Versions Compared

Key

  • This line was added.
  • This line was removed.
  • Formatting was changed.

...

In these charts composite MSLP is shown for anomalies in units of hPa are shown for El Niño (left) and La Niña (right), for Nov-Dec (ND, top) and Jan-Feb (JF, bottom). 

...

Expand
titleClick here to see how these MSLP composites are calculated ...
  • The ENSO state is characterised here using NINO3.4 - an index defined as the area-average sea surface temperature (SST) anomalies in the region (170W-120W, 5S-5N). The period used as reference for the analysis is 1970 - 2022; the selection of ENSO years is based on average SST anomalies in December-February (DJF).

  • Data used in this analysis is from ERA5 (ERA5, Hersbach et al., 2020).
  • Here, the thresholds for selection of El Niño and la Niña years are, respectively, the upper or lower quartile of the sample of years in the reference period. These correspond to, approximately, for winter (DJF, shown for ND & JA): El Niño (n34 > 0.6), La Niña (n34 < - 0.7)

  • The selected ENSO years for ND and JF (labelled by the year in which January falls) are:

    • El Niño  :   1973, 1983, 1987, 1988, 1992, 1995, 1998, 2003, 2007, 2010, 2015, 2016, 2019

    • La Niña :   1971, 1974, 1976, 1981, 1985, 1989, 1996, 1999, 2000, 2008, 2011, 2012, 2021

  • The composites above are a weighted average of the MSLP fields in the years above, where the weights are the strength of the NINO3.4 SST anomalies.
  • The regression and composite calculation to obtain the MSLP composites is performed as follows:

    • If Z’ (x, t) is the anomaly of a meteorological field defined at spatial coordinates x and time t, and s3.4 (t) is the SST anomaly in the NINO3.4 region, the regression pattern of Z’ against s3.4 is defined by:

      LaTeX Formatting
      block-alignleft
      \begin{equation*} R(\underline{x}) = \frac{\sum_{t} s3.4(t)\cdot Z'(\underline{x},t)}{\sum_{t} s3.4(t)^2} \end{equation*}


    • The regression pattern is computed separately for two sub-samples including periods when the s3.4 seasonal-mean value is either in upper third (El Niño years) or lower third (La Niña years) of the distribution. The following two-month periods are used for the regression analysis: November-December (ND) and January-February (JF); for the selection of ENSO years, average SST anomalies in DJF are used, as described above.

    • For both El Niño and La Niña years, composite anomalies are defined by: 

      LaTeX Formatting
      block-alignleft
      \begin{equation*} C(\underline{x}) = \mu3.4\cdot R(\underline{x}) \end{equation*}

      where μ3.4 is the average value of the Nino3.4 anomaly s3.4 over the selected years.

This method is further discussed in Molteni & Brookshaw 2023.


Average effects

ENSO events tend to peak at the end of the calendar year; accordingly, impacts over Europe tend to be stronger in winter than at other times of year.

...

Expand
titleMean sea level pressure (MSLP) anomalies over the Northern Hemisphere (Nov Dec/Jan Feb)

These MSLP anomalies are in units of hPa.

The NINO3.4 anomalies printed above each map are DJF means, which were used for the selection. 


El Niño years, ND anomaly, MSLP

La Niña years, ND anomaly, MSLP

Image Modified


El Niño years, JF anomaly, MSLP

La Niña years, JF anomaly, MSLP


...

Using the ENSO years selection approach outlined above (here with a choice between the period 1940-2022 and 1970-2022), typical effects on temperature and precipitation are illustrated, by displaying the number of years falling into the upper or lower tercile category of the distribution of the respective variable. Colours are only shown when the number of years is statistically significant. This concept and methodology is similar to that used in Davey et al. 2014.

These charts can be used to identify regions where, according to this analysis method, there is a statistically significant ENSO teleconnection for temperature or precipitation for each calendar month. Due to the variability seen within the postage stamp charts shown above for Europe, there is not a strong signature in the composites below. 

...

HTML
<script src="https://cdnjs.cloudflare.com/ajax/libs/jquery/3.6.1/jquery.min.js" integrity="sha512-aVKKRRi/Q/YV+4mjoKBsE4x3H+BkegoM/em46NNlCqNTmUYADjBbeNefNxYV7giUp0VxICtqdrbqU7iVaeZNXA==" crossorigin="anonymous" referrerpolicy="no-referrer"></script>      
 
 
   <style>
        option:disabled { opacity: 0.4; }
    </style>
 
  <script>
		$(document).ready(function(){
 
      var plotsBaseURL='https://confluence.ecmwf.int/download/attachments/373753650373753799/'
 
      var periods = [{key:'1940-2022', label:'1940-2022'}, {key:'1970-2022', label:'1970-2022'}]
 
        // populate selects
        var populate = function(vals,id,available){
            $.each(vals, function(){
                $('<option/>', {'value': this.key,'text': this.label}).appendTo('#'+id);
            });
        }
 
        populate(periods,'sel_period');
 
      // populate months
      function getMonthName(monthNumber) {
      const date = new Date(2001, monthNumber - 1, 1);
      return date.toLocaleString('en-GB', { month: 'long' });
      }
 
      for (var i = 1; i < 13; i++) {
		$('<option />', {'value': i,'text': getMonthName(i) }).appendTo('#sel_month');
      }
 
      //update functions
      var updateImage = function(){
        var period = $('#sel_period').val();
        var month = $('#sel_month').val();
		    var str_month = String(month).padStart(2, '0');
 
 
        imgfname=period+'_t2m_ENSOneg_tsum_month'+str_month+'.png';      
        $('#t2m_nina').attr('src',plotsBaseURL+imgfname);
 
        imgfname=period+'_t2m_ENSOpos_tsum_month'+str_month+'.png';      
        $('#t2m_nino').attr('src',plotsBaseURL+imgfname);        
 
        imgfname=period+'_tp_ENSOneg_tsum_month'+str_month+'.png';      
        $('#prec_nina').attr('src',plotsBaseURL+imgfname);
 
        imgfname=period+'_tp_ENSOpos_tsum_month'+str_month+'.png';      
        $('#prec_nino').attr('src',plotsBaseURL+imgfname);
 
 
      }
 
      updateImage();
 
      $('#selectors select').on('change',function(e){
        updateImage();
      })
 
    })
 
    </script>      
 
	<div id="selectors">
    <label for="sel_month">Month: </label><select id="sel_month" ></select>
    <label for="sel_period">Reference period: </label><select id="sel_period"></select>
    <br>
    </div>
 
    <img id="t2m_nina" width="50%"/><img id="t2m_nino" width="50%"/><br/>
	  <img id="prec_nina" width="50%"/><img id="prec_nino" width="50%"/><br/>

...

  • Molteni, F., Brookshaw, A. Early- and late-winter ENSO teleconnections to the Euro-Atlantic region in state-of-the-art seasonal forecasting systems. Clim Dyn 61, 2673–2692 (2023). https://doi.org/10.1007/s00382-023-06698-7
  • Hersbach, H, Bell, B, Berrisford, P, et al. The ERA5 global reanalysis. Q J R Meteorol Soc. 2020; 146: 19992049. https://doi.org/10.1002/qj.3803
  • Davey, M.K., Brookshaw, A. and Ineson, S., 2014. The probability of the impact of ENSO on precipitation and near-surface temperature. Climate Risk Management, 1, pp.5-24. https://doi.org/10.1016/j.crm.2013.12.002

...