page under construction ------------------------------
There are many situations where a user is only interested in a subset of the dataset spatial domain.
For example, when comparing modelled river flow against observations, it is reasonable to being able to extract the timeseries at those point coordinates rather than dealing with many GB of data.
Similarly, when the focus is on a specific catchment it is likely that you want only that part of the spatial domain.
In summary, there two operations that are very popular on CEMS-Flood datasets:
- Area cropping
- Time series extraction
There are different ways to perform those operations:
- From the CDS API (less data is downloaded)
- Locally (full control on the process)
GloFAS
Example script to crop and extract time series from different GloFAS products:
GloFAS Medium-range reforecast (download time series for an event)
This script shows how to retrieve a point time series reforecast on the river Thames for a single forecast reference time, specifically the 11th of July 2007. import cdsapi
from datetime import datetime, timedelta
def get_monthsdays(start =[2019,1,1],end=[2019,12,31]):
# reforecast time index
start, end = datetime(*start),datetime(*end)
days = [start + timedelta(days=i) for i in range((end - start).days + 1)]
monthday = [d.strftime("%B-%d").split("-") for d in days if d.weekday() in [0,3] ]
return monthday
if __name__ == '__main__':
c = cdsapi.Client()
# station coordinates (lat,lon)
COORDS = {
"Thames":[51.35,-0.45]
}
# select date index corresponding to the event
MONTHSDAYS = get_monthsdays(start =[2019,7,11],end=[2019,7,11])
YEAR = '2007'
LEADTIMES = ['%d'%(l) for l in range(24,1128,24)]
# loop over date index (just 1 in this case)
for md in MONTHSDAYS:
month = md[0].lower()
day = md[1]
# loop over station coordinates
for station in COORDS:
station_point_coord = COORDS[station]*2 # coordinates input for the area keyword
c.retrieve(
'cems-glofas-reforecast',
{
'system_version': 'version_2_2',
'variable': 'river_discharge_in_the_last_24_hours',
'format': 'grib',
'hydrological_model': 'htessel_lisflood',
'product_type': ['control_reforecast','ensemble_perturbed_reforecasts'],
'area':station_point_coord,
'hyear': YEAR,
'hmonth': month ,
'hday': day ,
'leadtime_hour': LEADTIMES,
},
f'glofas_reforecast_{station}_{month}_{day}.grib')
| In July 2007 a series of flooding events hit the UK, in particular in some areas of the upper Thames catchment up to 120 mm of rain fell between 19th and 20th of July. Plot retrieved data: import xarray as xr
import pandas as pd
import matplotlib.pyplot as plt
import matplotlib.dates as mdates
from datetime import datetime,timedelta
forecast_reference_time = datetime(2017,7,11)
# read perturbed ensembles (dataType:pf)
ds = xr.open_dataset("glofas_reforecast_Thames_july_11.grib",engine="cfgrib",backend_kwargs={'filter_by_keys':{'dataType': 'pf'}})
da = ds.isel(latitude=0,longitude=0).dis24
# read control (dataType:cf)
cds = xr.open_dataset("glofas_reforecast_Thames_july_11.grib",engine="cfgrib",backend_kwargs={'filter_by_keys':{'dataType': 'cf'}})
cda = cds.isel(latitude=0,longitude=0).dis24
start = forecast_reference_time
end = start + timedelta(45)
time = pd.date_range(start,end)
# plotting parameters
ls = ["-","--",":"]
locator = mdates.AutoDateLocator(minticks=2, maxticks=46)
formatter = mdates.DateFormatter("%b-%d")
# plot
fig,ax = plt.subplots(1,1,figsize=(16,8))
ax.plot(time,cda.values,label=f"control",color="red")
for i,number in enumerate(range(0,10)):
y = da.isel(number=number).values
ax.plot(time,y,label=f"ensemble {number}",color=colors[i],ls=ls[i%3])
plt.legend(bbox_to_anchor=(1,1),ncol=2)
ax.axvspan(datetime(2017,7,19), datetime(2017,7,21), alpha=0.3, color='blue') # highlight event
ax.set_xlabel("date")
ax.set_ylabel("m**3 s**-1")
ax.xaxis.set_major_locator(locator)
ax.xaxis.set_major_formatter(formatter)
ax.set_xlim([time[0],time[-1]])
plt.annotate("peak\nrainfall\nevent",(datetime(2017,7,19,3),85),rotation=0)
plt.xticks(rotation=70)
plt.title(f"Forecast reference time: 11-07-2007 - Thames river discharge at {float(ds.latitude.values),round(float(ds.longitude.values-360),2)}")
|
|---|

